The Asymptotic Stability of the Solution to the Full Hall-MHD System in R3

被引:0
|
作者
Tong, Leilei [1 ]
Tan, Zhong [2 ,3 ]
机构
[1] Chongqing Univ Posts & Telecommun, Dept Appl Math, Chongqing 400065, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
[3] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Fujian, Peoples R China
基金
中国国家自然科学基金;
关键词
Full Hall-MHD equations; Optimal decay rates; Energy method; Regular interpolation; COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS; MACH NUMBER LIMIT; GLOBAL EXISTENCE; WELL-POSEDNESS; CLASSICAL-SOLUTIONS; DECAY-RATES; BLOW-UP; MAGNETIC RECONNECTION; LARGE OSCILLATIONS; UNIQUENESS;
D O I
10.1007/s40840-019-00751-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the asymptotic stability of the solutions near a constant equilibrium state to the Cauchy problem for the compressible full Hall-MHD equations in R3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>3$$\end{document}. We employ the energy estimate and introduce the negative Sobolev and Besov spaces to get the global existence and decay rates of the solution under the assumption that the H3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H<^>3$$\end{document} norm of the initial perturbation is small. As an immediate byproduct, the Lp-L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p-L<^>2$$\end{document}(1 <= p <= 2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1\leqslant p\leqslant 2)$$\end{document} type of the decay rates follows without requiring the smallness for Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document} norm of initial data.
引用
收藏
页码:1465 / 1491
页数:27
相关论文
共 50 条