Plasma etching of wide bandgap and ultrawide bandgap semiconductors

被引:30
|
作者
Pearton, Stephen J. [1 ]
Douglas, Erica A. [2 ]
Shul, Randy J. [2 ]
Ren, Fan [3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
来源
基金
美国国家科学基金会;
关键词
INDUCTIVELY-COUPLED PLASMA; THERMAL-NEUTRON DETECTORS; BORON-NITRIDE; CVD DIAMOND; GAN; SURFACE; FABRICATION; ALGAN; MECHANISM; DEVICES;
D O I
10.1116/1.5131343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The precise patterning of front-side mesas, backside vias, and selective removal of ternary alloys are all needed for power device fabrication in the various wide bandgap (AlGaN/GaN, SiC) and ultrawide bandgap (high Al-content alloys, boron nitride, Ga2O3, diamond) semiconductor technologies. The plasma etching conditions used are generally ion-assisted because of the strong bond strengths in these materials, and this creates challenges for the choice of masks in order to have sufficient selectivity over the semiconductor and to avoid mask erosion and micromasking issues. It can also be challenging to achieve practical etch rates without creating excessive damage in the patterned surface. The authors review the optimum choices for plasma chemistries for each of the semiconductors and acknowledge the pioneering work of John Coburn, who first delineated the ion-assisted etch mechanism.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Recent Progress in Solar-Blind Photodetectors Based on Ultrawide Bandgap Semiconductors
    Wang, Lixia
    Xu, Shengming
    Yang, Jiangang
    Huang, Hui
    Huo, Zhe
    Li, Jing
    Xu, Xin
    Ren, Feng
    He, Yunbin
    Ma, Yaping
    Zhang, Weifeng
    Xiao, Xudong
    ACS OMEGA, 2024, 9 (24): : 25429 - 25447
  • [42] Recent advances in optoelectronic and microelectronic devices based on ultrawide-bandgap semiconductors
    Yang, Jialin
    Liu, Kewei
    Chen, Xing
    Shen, Dezhen
    PROGRESS IN QUANTUM ELECTRONICS, 2022, 83
  • [43] Role of Hydrogen in the CVD of Wide Bandgap Nitride Semiconductors
    Pearton, Stephen J.
    Polyakov, Alexander Y.
    CHEMICAL VAPOR DEPOSITION, 2010, 16 (10-12) : 266 - 274
  • [44] Progress in wide bandgap ferromagnetic semiconductors and semiconducting oxides
    Pearton, SJ
    Abernathy, CR
    Thaler, GT
    Frazier, RM
    Heo, YH
    Ivill, M
    Norton, DP
    Park, YD
    DEFECTS AND DIFFUSION IN SEMICONDUCTORS - AN ANNUAL RETROSPECTIVE VII, 2004, 230 : 17 - 45
  • [45] Wide bandgap GaN-based semiconductors for spintronics
    Pearton, SJ
    Abernathy, CR
    Thaler, GT
    Frazier, RM
    Norton, DP
    Ren, F
    Park, YD
    Zavada, JM
    Buyanova, A
    Chen, WM
    Hebard, AF
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (07) : R209 - R245
  • [46] Ultra-wide-bandgap semiconductors: opportunities and challenges
    Zheng, Wei
    Guo, Daoyou
    Yuan, Ye
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2025,
  • [47] (Ultra)wide-bandgap semiconductors for electric vehicles
    Gupta, Geetak
    Ahmadi, Elaheh
    MRS BULLETIN, 2024, 49 (07) : 730 - 737
  • [48] Excitons, microcavity physics and devices in wide bandgap semiconductors
    Nurmikko, AV
    JOURNAL OF CRYSTAL GROWTH, 2000, 214 : 993 - 1001
  • [49] Wide-Bandgap Semiconductors for Radiation Detection: A Review
    Capan, Ivana
    MATERIALS, 2024, 17 (05)
  • [50] Wide-Bandgap Semiconductors: Nanostructures, Defects, and Applications
    Liao, Meiyong
    Stergiopoulos, Thomas
    Alvarez, Jose
    Chattopadhyay, Surojit
    Zhang, Guihua
    JOURNAL OF NANOMATERIALS, 2015, 2015