Plasma etching of wide bandgap and ultrawide bandgap semiconductors

被引:30
|
作者
Pearton, Stephen J. [1 ]
Douglas, Erica A. [2 ]
Shul, Randy J. [2 ]
Ren, Fan [3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
来源
基金
美国国家科学基金会;
关键词
INDUCTIVELY-COUPLED PLASMA; THERMAL-NEUTRON DETECTORS; BORON-NITRIDE; CVD DIAMOND; GAN; SURFACE; FABRICATION; ALGAN; MECHANISM; DEVICES;
D O I
10.1116/1.5131343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The precise patterning of front-side mesas, backside vias, and selective removal of ternary alloys are all needed for power device fabrication in the various wide bandgap (AlGaN/GaN, SiC) and ultrawide bandgap (high Al-content alloys, boron nitride, Ga2O3, diamond) semiconductor technologies. The plasma etching conditions used are generally ion-assisted because of the strong bond strengths in these materials, and this creates challenges for the choice of masks in order to have sufficient selectivity over the semiconductor and to avoid mask erosion and micromasking issues. It can also be challenging to achieve practical etch rates without creating excessive damage in the patterned surface. The authors review the optimum choices for plasma chemistries for each of the semiconductors and acknowledge the pioneering work of John Coburn, who first delineated the ion-assisted etch mechanism.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Ultrawide-Bandgap Semiconductors for High-Frequency Devices
    Pavlidis, Spyridon
    Medwig, Greg
    Thomas, Michael
    IEEE MICROWAVE MAGAZINE, 2024, 25 (10) : 68 - 79
  • [22] Crystal Defects in Wide Bandgap Semiconductors
    Shenai, Krishna
    Christou, Aris
    Dudley, Michael
    Ragothamachar, Balaji
    Singh, Rajendra
    WIDE BANDGAP SEMICONDUCTOR MATERIALS AND DEVICES 15, 2014, 61 (04): : 283 - 293
  • [23] Wide bandgap semiconductors for utility applications
    Tolbert, LM
    Ozpineci, B
    Islam, SK
    Chinthavali, MS
    POWER AND ENERGY SYSTEMS, PROCEEDINGS, 2003, : 317 - 321
  • [24] Surface Photovoltage Spectroscopy over Wide Time Domains for Semiconductors with Ultrawide Bandgap: Example of Gallium Oxide
    Dittrich, Thomas
    Fengler, Steffen
    Nickel, Norbert
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2021, 218 (18):
  • [25] Chip Size Minimization for Wide and Ultrawide Bandgap Power Devices
    Wang, Boyan
    Xiao, Ming
    Zhang, Zichen
    Wang, Yifan
    Qin, Yuan
    Song, Qihao
    Lu, Guo-Quan
    Ngo, Khai
    Zhang, Yuhao
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (02) : 633 - 639
  • [26] Properties of photocurrent and metal contacts of highly resistive ultrawide bandgap semiconductors
    Tingsuwatit, A.
    Hossain, N. K.
    Alemoush, Z.
    Almohammad, M.
    Li, J.
    Lin, J. Y.
    Jiang, H. X.
    APPLIED PHYSICS LETTERS, 2024, 124 (16)
  • [27] High power devices in wide bandgap semiconductors
    Mikael Östling
    Science China Information Sciences, 2011, 54 : 1087 - 1093
  • [28] PHOTOSENSITIZATION OF WIDE BANDGAP SEMICONDUCTORS WITH ANTENNA MOLECULES
    BIGNOZZI, CA
    ARGAZZI, R
    SCHOONOVER, JR
    MEYER, GJ
    SCANDOLA, F
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 1995, 38 (1-4) : 187 - 198
  • [29] High power devices in wide bandgap semiconductors
    Ostling, Mikael
    SCIENCE CHINA-INFORMATION SCIENCES, 2011, 54 (05) : 1087 - 1093
  • [30] Wide bandgap semiconductors will transform electronic products
    Weber, Austin
    Assembly, 2014, 57 (12):