Plasma etching of wide bandgap and ultrawide bandgap semiconductors

被引:30
|
作者
Pearton, Stephen J. [1 ]
Douglas, Erica A. [2 ]
Shul, Randy J. [2 ]
Ren, Fan [3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
来源
基金
美国国家科学基金会;
关键词
INDUCTIVELY-COUPLED PLASMA; THERMAL-NEUTRON DETECTORS; BORON-NITRIDE; CVD DIAMOND; GAN; SURFACE; FABRICATION; ALGAN; MECHANISM; DEVICES;
D O I
10.1116/1.5131343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The precise patterning of front-side mesas, backside vias, and selective removal of ternary alloys are all needed for power device fabrication in the various wide bandgap (AlGaN/GaN, SiC) and ultrawide bandgap (high Al-content alloys, boron nitride, Ga2O3, diamond) semiconductor technologies. The plasma etching conditions used are generally ion-assisted because of the strong bond strengths in these materials, and this creates challenges for the choice of masks in order to have sufficient selectivity over the semiconductor and to avoid mask erosion and micromasking issues. It can also be challenging to achieve practical etch rates without creating excessive damage in the patterned surface. The authors review the optimum choices for plasma chemistries for each of the semiconductors and acknowledge the pioneering work of John Coburn, who first delineated the ion-assisted etch mechanism.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] pH sensors based on wide bandgap semiconductors
    Denisenko, A.
    Aleksov, A.
    Daumiller, I.
    Kohn, E.
    Annual Device Research Conference Digest, 2000, : 75 - 76
  • [32] High power devices in wide bandgap semiconductors
    STLING Mikael
    Science China(Information Sciences), 2011, 54 (05) : 1087 - 1093
  • [33] Nanostructuring wide bandgap semiconductors for light manipulation
    Subramania, Ganapathi
    2024 24TH INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, ICTON 2024, 2024,
  • [34] Exciton tunneling in wide-bandgap semiconductors
    Ten, S
    Henneberger, F
    Rabe, M
    Peyghambarian, N
    PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES IV, 1996, 2693 : 315 - 321
  • [35] An assessment of wide bandgap semiconductors for power devices
    Hudgins, JL
    Simin, GS
    Santi, E
    Khan, MA
    IEEE TRANSACTIONS ON POWER ELECTRONICS, 2003, 18 (03) : 907 - 914
  • [36] Photonics for Processing Wide-Bandgap Semiconductors
    Bernard, Benjamin
    Optics and Photonics News, 2024, 35 : 47 - 52
  • [37] Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis
    Sanz, M.
    Lopez-Arias, M.
    Rebollar, E.
    de Nalda, R.
    Castillejo, M.
    JOURNAL OF NANOPARTICLE RESEARCH, 2011, 13 (12) : 6621 - 6631
  • [38] Laser ablation and deposition of wide bandgap semiconductors: plasma and nanostructure of deposits diagnosis
    M. Sanz
    M. López-Arias
    E. Rebollar
    R. de Nalda
    M. Castillejo
    Journal of Nanoparticle Research, 2011, 13 : 6621 - 6631
  • [39] Two-dimensional nitride ordered alloys: A class of ultrawide bandgap semiconductors
    Arora, Raagya
    Barr, Ariel R.
    Bennett, Daniel
    Larson, Daniel T.
    Pizzochero, Michele
    Kaxiras, Efthimios
    Physical Review Materials, 2024, 8 (11)
  • [40] Wide and ultrawide-bandgap semiconductor surfaces: A full multiscale model
    Thomas, Giuliano
    Ferreyra, Romualdo Alejandro
    Quiroga, Matias A.
    APPLIED SURFACE SCIENCE, 2024, 670