Plasma etching of wide bandgap and ultrawide bandgap semiconductors

被引:30
|
作者
Pearton, Stephen J. [1 ]
Douglas, Erica A. [2 ]
Shul, Randy J. [2 ]
Ren, Fan [3 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
[3] Univ Florida, Dept Chem Engn, Gainesville, FL 32611 USA
来源
基金
美国国家科学基金会;
关键词
INDUCTIVELY-COUPLED PLASMA; THERMAL-NEUTRON DETECTORS; BORON-NITRIDE; CVD DIAMOND; GAN; SURFACE; FABRICATION; ALGAN; MECHANISM; DEVICES;
D O I
10.1116/1.5131343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The precise patterning of front-side mesas, backside vias, and selective removal of ternary alloys are all needed for power device fabrication in the various wide bandgap (AlGaN/GaN, SiC) and ultrawide bandgap (high Al-content alloys, boron nitride, Ga2O3, diamond) semiconductor technologies. The plasma etching conditions used are generally ion-assisted because of the strong bond strengths in these materials, and this creates challenges for the choice of masks in order to have sufficient selectivity over the semiconductor and to avoid mask erosion and micromasking issues. It can also be challenging to achieve practical etch rates without creating excessive damage in the patterned surface. The authors review the optimum choices for plasma chemistries for each of the semiconductors and acknowledge the pioneering work of John Coburn, who first delineated the ion-assisted etch mechanism.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Ultrawide bandgap semiconductors
    Higashiwaki, Masataka
    Kaplar, Robert
    Pernot, Julien
    Zhao, Hongping
    APPLIED PHYSICS LETTERS, 2021, 118 (20)
  • [2] Ultrawide Bandgap Semiconductors Preface
    Zhao, Yuji
    Mi, Zetian
    ULTRAWIDE BANDGAP SEMICONDUCTORS, 2021, 107 : XIII - XIV
  • [3] Prospects for Wide Bandgap and Ultrawide Bandgap CMOS Devices
    Bader, Samuel James
    Lee, Hyunjea
    Chaudhuri, Reet
    Huang, Shimin
    Hickman, Austin
    Molnar, Alyosha
    Xing, Huili Grace
    Jena, Debdeep
    Then, Han Wui
    Chowdhury, Nadim
    Palacios, Tomas
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (10) : 4010 - 4020
  • [4] Progresses and Frontiers in Ultrawide Bandgap Semiconductors
    Rajan, Siddharth
    Li, Xiaohang
    ADVANCED ELECTRONIC MATERIALS, 2025, 11 (01):
  • [5] Ultrawide-bandgap semiconductors: An overview
    Wong, Man Hoi
    Bierwagen, Oliver
    Kaplar, Robert J.
    Umezawa, Hitoshi
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (23) : 4601 - 4615
  • [6] Ultrawide-bandgap semiconductors: An overview
    Man Hoi Wong
    Oliver Bierwagen
    Robert J. Kaplar
    Hitoshi Umezawa
    Journal of Materials Research, 2021, 36 : 4601 - 4615
  • [7] Wide bandgap and ultra-wide bandgap semiconductors
    Hao, Yue
    Jiang, Fengyi
    FUNDAMENTAL RESEARCH, 2021, 1 (06): : 655 - 655
  • [8] Editorial: Progresses and Frontiers in Ultrawide Bandgap Semiconductors
    Li, Xiaohang
    Rajan, Siddharth
    ADVANCED MATERIALS INTERFACES, 2025, 12 (02):
  • [9] The dry etching of group III nitride wide-bandgap semiconductors
    Gillis, HP
    Choutov, DA
    Martin, KP
    JOM-JOURNAL OF THE MINERALS METALS & MATERIALS SOCIETY, 1996, 48 (08): : 50 - 55
  • [10] Ultrawide-Bandgap Semiconductors: Research Opportunities and Challenges
    Tsao, J. Y.
    Chowdhury, S.
    Hollis, M. A.
    Jena, D.
    Johnson, N. M.
    Jones, K. A.
    Kaplar, R. J.
    Rajan, S.
    Van de Walle, C. G.
    Bellotti, E.
    Chua, C. L.
    Collazo, R.
    Coltrin, M. E.
    Cooper, J. A.
    Evans, K. R.
    Graham, S.
    Grotjohn, T. A.
    Heller, E. R.
    Higashiwaki, M.
    Islam, M. S.
    Juodawlkis, P. W.
    Khan, M. A.
    Koehler, A. D.
    Leach, J. H.
    Mishra, U. K.
    Nemanich, R. J.
    Pilawa-Podgurski, R. C. N.
    Shealy, J. B.
    Sitar, Z.
    Tadjer, M. J.
    Witulski, A. F.
    Wraback, M.
    Simmons, J. A.
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (01):