Gotzmann monomial ideals

被引:5
|
作者
Murai, Satoshi [1 ]
机构
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Osaka 5600043, Japan
关键词
D O I
10.1215/ijm/1258131105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gotzmann monomial ideal of a polynomial ring is a monomial ideal which is generated in one degree and which satisfies Gotzmann's persistence theorem. Let R = K[x(1),..., x(n)] denote the polynomial ring in n variables over a field K and M-d the set of monomials of R of degree d. A subset V subset of M-d is said to be a Gotzmann subset if the ideal generated by V is a Gotzmann monomial ideal. In the present paper, we find all integers a > 0 such that every Gotzmann subset V C Md with vertical bar V vertical bar = a is lexsegment (up to the permutations of the variables). In addition, we classify all Gotzmann subsets of K [x(1), x(2), x(3)].
引用
收藏
页码:843 / 852
页数:10
相关论文
共 50 条
  • [41] On Monomial Ideals and Their Socles
    Geir Agnarsson
    Neil Epstein
    Order, 2020, 37 : 341 - 369
  • [42] MONOMIAL DIFFERENCE IDEALS
    Wang, Jie
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (04) : 1481 - 1496
  • [43] Liaison of monomial ideals
    Huneke, Craig
    Ulrich, Bernd
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2007, 39 : 384 - 392
  • [44] Monomial ideals with tiny squares and Freiman ideals
    Ibrahim Al-Ayyoub
    Mehrdad Nasernejad
    Czechoslovak Mathematical Journal, 2021, 71 : 847 - 864
  • [45] Monomial Ideals with Tiny Squares and Freiman Ideals
    Al-Ayyoub, Ibrahim
    Nasernejad, Mehrdad
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) : 847 - 864
  • [46] On Posets, Monomial Ideals, Gorenstein Ideals and their Combinatorics
    Agnarsson, Geir
    Epstein, Neil
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2024,
  • [47] ON THE STABILITY AND REGULARITY OF THE MULTIPLIER IDEALS OF MONOMIAL IDEALS
    Tang, Zhongming
    Gong, Cheng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (02): : 167 - 176
  • [48] On the stability and regularity of the multiplier ideals of monomial ideals
    Zhongming Tang
    Cheng Gong
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 167 - 176
  • [49] The saturation number of monomial ideals
    Abdolmaleki, Reza
    Pour, Ali Akbar Yazdan
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (08) : 3163 - 3171
  • [50] Circulant digraphs and monomial ideals
    Gómez, D
    Gutierrez, J
    Ibeas, A
    COMPUTER ALGEBRA IN SCIENFIFIC COMPUTING, PROCEEDINGS, 2005, 3718 : 196 - 207