Monomial Ideals with Tiny Squares and Freiman Ideals

被引:2
|
作者
Al-Ayyoub, Ibrahim [1 ,2 ]
Nasernejad, Mehrdad [3 ]
机构
[1] Sultan Qaboos Univ, Dept Math, POB 31, Muscat, Oman
[2] Jordan Univ Sci & Technol, Dept Math & Stat, POB 3030, Irbid 22110, Jordan
[3] Khayyam Univ, Dept Math, Mashhad, Razavi Khorasan, Iran
关键词
Freiman ideal; number of generator; power of ideal; Ratliff-Rush closure;
D O I
10.21136/CMJ.2021.0124-20
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide a construction of monomial ideals in R = K[x, y] such that mu(I-2) < mu(I), where mu denotes the least number of generators. This construction generalizes the main result of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018). Working in the ring R, we generalize the definition of a Freiman ideal which was introduced in J. Herzog, G. Zhu (2019) and then we give a complete characterization of such ideals. A particular case of this characterization leads to some further investigations on mu(I-k) that generalize some results of S. Eliahou, J. Herzog, M. Mohammadi Saem (2018), J. Herzog, M. Mohammadi Saem, N. Zamani (2019), and J. Herzog, A. Asloob Qureshi, M. Mohammadi Saem (2019).
引用
收藏
页码:847 / 864
页数:18
相关论文
共 50 条
  • [1] Monomial ideals with tiny squares and Freiman ideals
    Ibrahim Al-Ayyoub
    Mehrdad Nasernejad
    Czechoslovak Mathematical Journal, 2021, 71 : 847 - 864
  • [2] Monomial ideals with tiny squares
    Eliahou, Shalom
    Herzog, Juergen
    Saem, Maryam Mohammadi
    JOURNAL OF ALGEBRA, 2018, 514 : 99 - 112
  • [3] Freiman ideals and the number of generators of powers of monomial ideals
    Al-Ayyoub, Ibrahim
    Nasernejad, Mehrdad
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 877 - 891
  • [4] Regular sequences on squares of monomial ideals
    Fouli, Louiza
    Tai Huy Ha
    Morey, Susan
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (01): : 122 - 146
  • [5] Regular sequences on squares of monomial ideals
    Louiza Fouli
    Tài Huy Hà
    Susan Morey
    São Paulo Journal of Mathematical Sciences, 2023, 17 : 122 - 146
  • [6] Freiman ideals
    Herzog, Juergen
    Zhu, Guangjun
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 407 - 423
  • [7] Monomial ideals with tiny powers: a simpler case
    Tout, Omar
    Al-Ayyoub, Ibrahim
    RICERCHE DI MATEMATICA, 2025,
  • [8] Sortable Freiman Ideals
    J. Herzog
    G. Zhu
    Mathematical Notes, 2020, 107 : 946 - 952
  • [9] Sortable Freiman Ideals
    Herzog, J.
    Zhu, G.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 946 - 952
  • [10] Superficial ideals for monomial ideals
    Rajaee, Saeed
    Nasernejad, Mehrdad
    Al-Ayyoub, Ibrahim
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2018, 17 (06)