Sortable Freiman Ideals

被引:0
|
作者
J. Herzog
G. Zhu
机构
[1] Universität Duisburg-Essen,Fachbereich Mathematik
[2] Suzhou University,Department of Mathematics
来源
Mathematical Notes | 2020年 / 107卷
关键词
Freiman ideal; sorted ideal; principal Borel ideal; Veronese-type ideals with constant bound;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, it is shown that a sortable ideal I is Freiman if and only if its sorted graph is chordal. This characterization is used to give a complete classification of Freiman principal Borel ideals and of Freiman Veronese-type ideals with constant bound.
引用
收藏
页码:946 / 952
页数:6
相关论文
共 50 条
  • [1] Sortable Freiman Ideals
    Herzog, J.
    Zhu, G.
    MATHEMATICAL NOTES, 2020, 107 (5-6) : 946 - 952
  • [2] Freiman ideals
    Herzog, Juergen
    Zhu, Guangjun
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (01) : 407 - 423
  • [3] Monomial Ideals with Tiny Squares and Freiman Ideals
    Al-Ayyoub, Ibrahim
    Nasernejad, Mehrdad
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (03) : 847 - 864
  • [4] Monomial ideals with tiny squares and Freiman ideals
    Ibrahim Al-Ayyoub
    Mehrdad Nasernejad
    Czechoslovak Mathematical Journal, 2021, 71 : 847 - 864
  • [5] Freiman ideals and the number of generators of powers of monomial ideals
    Al-Ayyoub, Ibrahim
    Nasernejad, Mehrdad
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (02) : 877 - 891
  • [6] Freiman Borel-type ideals
    Zhu, Guangjun
    Zhao, Yakun
    Du, Shiya
    Yang, Yulong
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (01)
  • [7] Freiman Cover Ideals of Unmixed Bipartite Graphs
    Guangjun Zhu
    Yakun Zhao
    Yijun Cui
    Mathematical Notes, 2021, 110 : 440 - 448
  • [8] Freiman Cover Ideals of Unmixed Bipartite Graphs
    Zhu, Guangjun
    Zhao, Yakun
    Cui, Yijun
    MATHEMATICAL NOTES, 2021, 110 (3-4) : 440 - 448
  • [9] On quasi-equigenerated and Freiman cover ideals of graphs
    Drabkin, Benjamin
    Guerrieri, Lorenzo
    COMMUNICATIONS IN ALGEBRA, 2020, 48 (10) : 4413 - 4435
  • [10] Freiman t-Spread Principal Borel Ideals
    Zhu, Guangjun
    Zhao, Yakun
    Cui, Yijun
    MATHEMATICAL NOTES, 2022, 112 (1-2) : 191 - 198