Gotzmann monomial ideals

被引:5
|
作者
Murai, Satoshi [1 ]
机构
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Osaka 5600043, Japan
关键词
D O I
10.1215/ijm/1258131105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gotzmann monomial ideal of a polynomial ring is a monomial ideal which is generated in one degree and which satisfies Gotzmann's persistence theorem. Let R = K[x(1),..., x(n)] denote the polynomial ring in n variables over a field K and M-d the set of monomials of R of degree d. A subset V subset of M-d is said to be a Gotzmann subset if the ideal generated by V is a Gotzmann monomial ideal. In the present paper, we find all integers a > 0 such that every Gotzmann subset V C Md with vertical bar V vertical bar = a is lexsegment (up to the permutations of the variables). In addition, we classify all Gotzmann subsets of K [x(1), x(2), x(3)].
引用
收藏
页码:843 / 852
页数:10
相关论文
共 50 条
  • [21] RIGID MONOMIAL IDEALS
    Clark, Timothy B. P.
    Mapes, Sonja
    JOURNAL OF COMMUTATIVE ALGEBRA, 2014, 6 (01) : 33 - 52
  • [22] Orderings of monomial ideals
    Aschenbrenner, M
    Pong, WY
    FUNDAMENTA MATHEMATICAE, 2004, 181 (01) : 27 - 74
  • [23] Skeletons of monomial ideals
    Herzog, Juergen
    Jahan, Ali Soleyman
    Zheng, Xinxian
    MATHEMATISCHE NACHRICHTEN, 2010, 283 (10) : 1403 - 1408
  • [24] A note on monomial ideals
    Barile, Margherita
    ARCHIV DER MATHEMATIK, 2006, 87 (06) : 516 - 521
  • [25] On Monomial Golod Ideals
    Hailong Dao
    Alessandro De Stefani
    Acta Mathematica Vietnamica, 2022, 47 : 359 - 367
  • [26] The graph of monomial ideals
    Altmann, K
    Sturmfels, B
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 201 (1-3) : 250 - 263
  • [27] Random monomial ideals
    De Loera, Jesus A.
    Petrovic, Sonja
    Silverstein, Lily
    Stasi, Despina
    Wilburne, Dane
    JOURNAL OF ALGEBRA, 2019, 519 : 440 - 473
  • [28] SPLITTINGS OF MONOMIAL IDEALS
    Francisco, Christopher A.
    Ha, Huy Tai
    Van Tuyl, Adam
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (10) : 3271 - 3282
  • [29] MONOMIAL CUT IDEALS
    Olteanu, Anda
    COMMUNICATIONS IN ALGEBRA, 2013, 41 (03) : 955 - 970
  • [30] Multiplicities of monomial ideals
    Herzog, J
    Srinivasan, H
    JOURNAL OF ALGEBRA, 2004, 274 (01) : 230 - 244