Gotzmann monomial ideals

被引:5
|
作者
Murai, Satoshi [1 ]
机构
[1] Osaka Univ, Dept Pure & Appl Math, Grad Sch Informat Sci & Technol, Osaka 5600043, Japan
关键词
D O I
10.1215/ijm/1258131105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Gotzmann monomial ideal of a polynomial ring is a monomial ideal which is generated in one degree and which satisfies Gotzmann's persistence theorem. Let R = K[x(1),..., x(n)] denote the polynomial ring in n variables over a field K and M-d the set of monomials of R of degree d. A subset V subset of M-d is said to be a Gotzmann subset if the ideal generated by V is a Gotzmann monomial ideal. In the present paper, we find all integers a > 0 such that every Gotzmann subset V C Md with vertical bar V vertical bar = a is lexsegment (up to the permutations of the variables). In addition, we classify all Gotzmann subsets of K [x(1), x(2), x(3)].
引用
收藏
页码:843 / 852
页数:10
相关论文
共 50 条
  • [1] A combinatorial proof of Gotzmann's persistence theorem for monomial ideals
    Murai, Satoshi
    EUROPEAN JOURNAL OF COMBINATORICS, 2008, 29 (01) : 322 - 333
  • [2] Principal Borel ideals and Gotzmann ideals
    V. Bonanzinga
    Archiv der Mathematik, 2003, 81 : 385 - 396
  • [3] GOTZMANN EDGE IDEALS
    Hoefel, Andrew H.
    COMMUNICATIONS IN ALGEBRA, 2012, 40 (04) : 1222 - 1233
  • [4] GOTZMANN LEXSEGMENT IDEALS
    Olteanu, Anda
    Olteanu, Oana
    Sorrenti, Loredana
    MATEMATICHE, 2008, 63 (02): : 229 - 241
  • [5] Principal Borel ideals and Gotzmann ideals
    Bonanzinga, V
    ARCHIV DER MATHEMATIK, 2003, 81 (04) : 385 - 396
  • [6] GOTZMANN SQUAREFREE IDEALS
    Hoefel, Andrew H.
    Mermin, Jeff
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (02) : 397 - 414
  • [7] Two remarks on monomial Gotzmann sets
    Pir, Ata Firat
    Sezer, Mufit
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2012, 216 (04) : 833 - 836
  • [8] Gotzmann ideals of the polynomial ring
    Murai, Satoshi
    Hibi, Takayuki
    MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (03) : 629 - 646
  • [9] Gotzmann ideals of the polynomial ring
    Satoshi Murai
    Takayuki Hibi
    Mathematische Zeitschrift, 2008, 260 : 629 - 646
  • [10] The Lefschetz property for componentwise linear ideals and Gotzmann ideals
    Wiebe, A
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (12) : 4601 - 4611