A combinatorial proof of Gotzmann's persistence theorem for monomial ideals

被引:4
|
作者
Murai, Satoshi [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Toyonaka, Osaka 560, Japan
基金
日本学术振兴会;
关键词
D O I
10.1016/j.ejc.2006.07.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Gotzmann proved the persistence for minimal growth of Hilbert functions of homogeneous ideals. His theorem is called Gotzmann's persistence theorem. In this paper, based on the combinatorics of binomial coefficients, a simple combinatorial proof of Gotzmann's persistence theorem in the special case of monomial ideals is given. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:322 / 333
页数:12
相关论文
共 50 条
  • [1] Gotzmann monomial ideals
    Murai, Satoshi
    ILLINOIS JOURNAL OF MATHEMATICS, 2007, 51 (03) : 843 - 852
  • [2] Gotzmann's persistence theorem for finite modules
    Stahl, Gustav Saeden
    JOURNAL OF ALGEBRA, 2017, 477 : 278 - 293
  • [3] HILBERT'S SYZYGY THEOREM FOR MONOMIAL IDEALS
    Alesandroni, Guillermo
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2022, 32 : 80 - 85
  • [4] Combinatorial decompositions for monomial ideals
    Ceria, Michela
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 : 630 - 652
  • [5] A COMBINATORIAL PROBLEM INVOLVING MONOMIAL IDEALS
    CURTIS, FJ
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 104 (02) : 161 - 167
  • [6] A family of monomial ideals with the persistence property
    Moradi, Somayeh
    Rahimbeigi, Masoomeh
    Khosh-Ahang, Fahimeh
    Jahan, Ali Soleyman
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (05)
  • [7] On the strong persistence property for monomial ideals
    Reyes, Enrique
    Toledo, Jonathan
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2017, 60 (03): : 293 - 305
  • [8] A combinatorial proof of Wilson's theorem
    Tripathi, Amitabha
    ARS COMBINATORIA, 2006, 80 : 201 - 204
  • [9] COMBINATORIAL PROOF OF A COMBINATORIAL THEOREM
    HENLE, JM
    KLEINBERG, EM
    ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1975, 26 (1-2): : 3 - 7
  • [10] Replication in critical graphs and the persistence of monomial ideals
    Kaiser, Tomas
    Stehlik, Matej
    Skrekovski, Riste
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2014, 123 (01) : 239 - 251