Smooth long-time existence of Harmonic Ricci Flow on surfaces

被引:8
|
作者
Buzano, Reto [1 ]
Rupflin, Melanie [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
DIFFERENTIAL HARNACK INEQUALITIES; GEOMETRIC FLOWS; EVOLVING MANIFOLDS; MINIMAL-SURFACES; HEAT-EQUATIONS; MAP FLOW; SOLITONS;
D O I
10.1112/jlms.12005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that at a finite singular time for the Harmonic Ricci Flow on a surface of positive genus both the energy density of the map component and the curvature of the domain manifold have to blow up simultaneously. As an immediate consequence, we obtain smooth long-time existence for the Harmonic Ricci Flow with large coupling constant.
引用
收藏
页码:277 / 304
页数:28
相关论文
共 50 条