Smooth long-time existence of Harmonic Ricci Flow on surfaces

被引:8
|
作者
Buzano, Reto [1 ]
Rupflin, Melanie [2 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
[2] Univ Oxford, Math Inst, Oxford OX2 6GG, England
基金
英国工程与自然科学研究理事会;
关键词
DIFFERENTIAL HARNACK INEQUALITIES; GEOMETRIC FLOWS; EVOLVING MANIFOLDS; MINIMAL-SURFACES; HEAT-EQUATIONS; MAP FLOW; SOLITONS;
D O I
10.1112/jlms.12005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that at a finite singular time for the Harmonic Ricci Flow on a surface of positive genus both the energy density of the map component and the curvature of the domain manifold have to blow up simultaneously. As an immediate consequence, we obtain smooth long-time existence for the Harmonic Ricci Flow with large coupling constant.
引用
收藏
页码:277 / 304
页数:28
相关论文
共 50 条
  • [41] Long-time Existence for Systems of Quasilinear Wave Equations
    Metcalfe J.
    Rhoads T.
    La Matematica, 2023, 2 (1): : 37 - 84
  • [42] Existence of Ricci Flows of Incomplete Surfaces
    Giesen, Gregor
    Topping, Peter M.
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (10) : 1860 - 1880
  • [43] On the extension of the Harmonic Ricci flow
    Cheng, Liang
    Zhu, Anqiang
    GEOMETRIAE DEDICATA, 2013, 164 (01) : 179 - 185
  • [44] On the Extension of Ricci Harmonic Flow
    Wu, Guoqiang
    Zheng, Yu
    RESULTS IN MATHEMATICS, 2020, 75 (02)
  • [45] On the extension of the Harmonic Ricci flow
    Liang Cheng
    Anqiang Zhu
    Geometriae Dedicata, 2013, 164 : 179 - 185
  • [46] Harmonic Spinors in the Ricci Flow
    Baldauf, Julius
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (08)
  • [47] On the Extension of Ricci Harmonic Flow
    Guoqiang Wu
    Yu Zheng
    Results in Mathematics, 2020, 75
  • [48] Long-time scale harmonic responsibility division method considering harmonic severity
    Zhang Y.
    Guo J.
    Shao Z.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2024, 44 (01): : 126 - 133
  • [49] Global existence and long-time behavior of smooth solutions of two-fluid Euler-Maxwell equations
    Peng, Yue-Jun
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 737 - 759
  • [50] REMARKS ON EXISTENCE OF NOISE-INDUCED LONG-TIME TAIL
    HAMADA, Y
    MUTO, K
    PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (02): : 451 - 463