Feature extraction and parameters selection of classification model on brain-computer interface

被引:0
|
作者
Zhao, Mingyuan [1 ]
Zhou, Mingtian [1 ]
Zhu, Qingxin [1 ]
Yang, Ping [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Technol, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
brain-computer interface; common spatial patterns; support vector machines; feature extraction method; area search table;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain-computer interface (BCI) is a communication system that connects the brain with the computer and the peripheral equipment. In classification experiment of single-trial electroencephalogram (EEG) for left and right finger movement task, common spatial patterns (CSP) are employed to extract feature for EEG signals, and support vector machines (SVM) are used to classify. Basing on neurophysiological background of EEG signals, a new feature extraction method is proposed to select channel number, position, filter frequency and spatial filter number. Basing on analyzing change feature of the error penalty parameter C and the Gaussian kernel parameter Con support vector machines, a new area search table is proposed to improve classification accuracy.
引用
收藏
页码:1249 / +
页数:2
相关论文
共 50 条
  • [41] Feature Extraction of SSVEP-Based Brain-Computer Interface with ICA and HHT Method
    Ruan, Xiaogang
    Xue, Kun
    Li, Mingai
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 2418 - 2423
  • [42] A new method of feature extraction from EEG signal for brain-computer interface design
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz J.
    PRZEGLAD ELEKTROTECHNICZNY, 2010, 86 (09): : 35 - 38
  • [43] Identifying local ultrametricity of EEG time series for feature extraction in a brain-computer interface
    Coyle, Damien
    McGinnity, Thomas M.
    Prasad, Girijesh
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 701 - 704
  • [44] Feature Extraction of Brain-Computer Interface based on Improved Multivariate Adaptive Autoregressive Models
    Wang, Jiang
    Xu, Guizhi
    Wang, Lei
    Zhang, Huiyuan
    2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 895 - 898
  • [45] Functional source separation and hand cortical representation for a brain-computer interface feature extraction
    Tecchio, Franca
    Porcaro, Camillo
    Barbati, Giulia
    Zappasodi, Filippo
    JOURNAL OF PHYSIOLOGY-LONDON, 2007, 580 (03): : 703 - 721
  • [46] An improved feature extraction method for self-paced brain-computer interface application
    Chen Guangming
    Zhang Jiacai
    Yao Li
    2009 ICME INTERNATIONAL CONFERENCE ON COMPLEX MEDICAL ENGINEERING, 2009, : 155 - 160
  • [47] Bispectrum-based feature extraction technique for devising a practical brain-computer interface
    Shahid, Shahjahan
    Prasad, Girijesh
    JOURNAL OF NEURAL ENGINEERING, 2011, 8 (02)
  • [48] Feature selection and blind source separation in an EEG-based brain-computer interface
    Peterson, DA
    Knight, JN
    Kirby, MJ
    Anderson, CW
    Thaut, MH
    EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2005, 2005 (19) : 3128 - 3140
  • [49] Feature selection and blind source separation in an EEG-based brain-computer interface
    Peterson, David A.
    Knight, James N.
    Kirby, Michael J.
    Anderson, Charles W.
    Thaut, Michael H.
    Eurasip Journal on Applied Signal Processing, 2005, 2005 (19): : 3128 - 3140
  • [50] Multi-way feature selection for ECoG-based Brain-Computer Interface
    Motrenko, Anastasia
    Strijov, Vadim
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 114 : 402 - 413