Feature extraction and parameters selection of classification model on brain-computer interface

被引:0
|
作者
Zhao, Mingyuan [1 ]
Zhou, Mingtian [1 ]
Zhu, Qingxin [1 ]
Yang, Ping [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Technol, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
brain-computer interface; common spatial patterns; support vector machines; feature extraction method; area search table;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain-computer interface (BCI) is a communication system that connects the brain with the computer and the peripheral equipment. In classification experiment of single-trial electroencephalogram (EEG) for left and right finger movement task, common spatial patterns (CSP) are employed to extract feature for EEG signals, and support vector machines (SVM) are used to classify. Basing on neurophysiological background of EEG signals, a new feature extraction method is proposed to select channel number, position, filter frequency and spatial filter number. Basing on analyzing change feature of the error penalty parameter C and the Gaussian kernel parameter Con support vector machines, a new area search table is proposed to improve classification accuracy.
引用
收藏
页码:1249 / +
页数:2
相关论文
共 50 条
  • [31] A Recurrence-Based Approach for Feature Extraction in Brain-Computer Interface Systems
    Uribe, Luisa F. S.
    Fazanaro, Filipe I.
    Castellano, Gabriela
    Suyama, Ricardo
    Attux, Romis
    Cardozo, Eleri
    Soriano, Diogo C.
    TRANSLATIONAL RECURRENCES: FROM MATHEMATICAL THEORY TO REAL-WORLD APPLICATIONS, 2014, 103 : 95 - +
  • [32] EEG Feature Extraction Using Evolutionary Algorithms for Brain-Computer Interface Development
    Alfredo Rocha-Herrera, Cesar
    Diaz-Manriquez, Alan
    Hugo Barron-Zambrano, Jose
    Carlos Elizondo-Leal, Juan
    Paul Saldivar-Alonso, Vicente
    Ramon Martinez-Angulo, Jose
    Aurelio Nuno-Maganda, Marco
    Polanco-Martagon, Said
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [33] Support vector EEG classification with ICA feature enhancement for brain-computer interface
    Guan, Jin-An
    Chen, Yaguang
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13E : 3688 - 3693
  • [34] An extended EM algorithm for joint feature extraction and classification in brain-computer interfaces
    Li, Yuanqing
    Guan, Cuntai
    NEURAL COMPUTATION, 2006, 18 (11) : 2730 - 2761
  • [36] An efficient approach of EEG feature extraction and classification for brain computer interface
    Wu, Ting
    Yan, Guozheng
    Yang, Banghua
    High Technology Letters, 2009, 15 (03) : 277 - 280
  • [37] FewShotEEG Learning and Classification for Brain-Computer Interface
    Bharati, Subrato
    Ahmad, M. Omair
    Swamy, M. N. S.
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [38] Optimal parameterization selection for the brain-computer interface
    Stastny, J
    Zejbrdlich, J
    Sovka, P
    PROCEEDINGS OF THE 4TH WSEAS INTERNATIONAL CONFERENCE ON APPLICATIONS OF ELECTRICAL ENGINEERING, 2005, : 300 - 304
  • [39] Brain-computer interface classification based on AdaBoost
    Tian, Yin
    Li, Pei-Yang
    Xu, Peng
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2013, 42 (05): : 791 - 793
  • [40] Optimizing Prediction Model for a Noninvasive Brain-Computer Interface Platform Using Channel Selection, Classification, and Regression
    Borhani, Soheil
    Kilmarx, Justin
    Saffo, David
    Ng, Lucien
    Abiri, Reza
    Zhao, Xiaopeng
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (06) : 2475 - 2482