Feature extraction and parameters selection of classification model on brain-computer interface

被引:0
|
作者
Zhao, Mingyuan [1 ]
Zhou, Mingtian [1 ]
Zhu, Qingxin [1 ]
Yang, Ping [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci & Technol, Chengdu 610054, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Chengdu 610054, Peoples R China
基金
美国国家科学基金会;
关键词
brain-computer interface; common spatial patterns; support vector machines; feature extraction method; area search table;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Brain-computer interface (BCI) is a communication system that connects the brain with the computer and the peripheral equipment. In classification experiment of single-trial electroencephalogram (EEG) for left and right finger movement task, common spatial patterns (CSP) are employed to extract feature for EEG signals, and support vector machines (SVM) are used to classify. Basing on neurophysiological background of EEG signals, a new feature extraction method is proposed to select channel number, position, filter frequency and spatial filter number. Basing on analyzing change feature of the error penalty parameter C and the Gaussian kernel parameter Con support vector machines, a new area search table is proposed to improve classification accuracy.
引用
收藏
页码:1249 / +
页数:2
相关论文
共 50 条
  • [21] Feature Extraction for a Genetic Programming-Based Brain-Computer Interface
    de Souza, Gabriel Henrique
    Faria, Gabriel Oliveira
    Motta, Luciana Paixao
    Bernardino, Heder Soares
    Vieira, Alex Borges
    INTELLIGENT SYSTEMS, PT I, 2022, 13653 : 135 - 149
  • [22] Implementation of genetic algorithms to feature selection for the use of brain-computer interface
    Kolodziej, Marcin
    Majkowski, Andrzej
    Rak, Remigiusz
    PRZEGLAD ELEKTROTECHNICZNY, 2011, 87 (05): : 71 - 76
  • [23] A Hybrid Approach to Feature Subset Selection for Brain-Computer Interface Design
    Gan, John Q.
    Hasan, Bashar Awwad Shiekh
    Tsui, Chun Sing Louis
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2011, 2011, 6936 : 279 - 286
  • [24] Channel Selection and Feature Extraction of ECoG-based Brain-Computer Interface using Band Power
    Zhao, Haibin
    Liu, Chong
    Yu, Chunyang
    Wang, Hong
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE, PTS 1-4, 2011, 44-47 : 3564 - 3568
  • [25] Feature Selection for Brain-Computer Interfaces
    Koprinska, Irena
    NEW FRONTIERS IN APPLIED DATA MINING, 2010, 5669 : 106 - 117
  • [26] Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery
    Cabrera, Alvaro Fuentes
    Farina, Dario
    Dremstrup, Kim
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2010, 48 (02) : 123 - 132
  • [27] Uncorrelated Transferable Feature Extraction for Signal Classification in Brain-Computer Interfaces
    Shi, Honglei
    Xu, Jinhua
    Sun, Shiliang
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [28] Classification of brain-computer interface data
    AlZoubi, Omar
    Koprinska, Irena
    Calvo, Rafael A.
    Conferences in Research and Practice in Information Technology Series, 2008, 87 : 123 - 131
  • [29] A time-series prediction approach for feature extraction in a brain-computer interface
    Coyle, D
    Prasad, G
    McGinnity, TM
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2005, 13 (04) : 461 - 467
  • [30] EEG Feature Extraction Using Evolutionary Algorithms for Brain-Computer Interface Development
    Alfredo Rocha-Herrera, Cesar
    Diaz-Manriquez, Alan
    Hugo Barron-Zambrano, Jose
    Carlos Elizondo-Leal, Juan
    Paul Saldivar-Alonso, Vicente
    Ramon Martinez-Angulo, Jose
    Aurelio Nuno-Maganda, Marco
    Polanco-Martagon, Said
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022