Universal Algebraic Geometry

被引:4
|
作者
Daniyarova, E. Yu. [1 ]
Myasnikov, A. G. [1 ]
Remeslennikov, V. N. [1 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Schaefer Sch Engn & Sci, Hoboken, NJ 07030 USA
基金
俄罗斯基础研究基金会;
关键词
Algebraic Geometry; Algebraic Structure; DOKLADY Mathematic; Atomic Formula; Predicate Symbol;
D O I
10.1134/S1064562411050073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Universal algebraic geometry over concrete algebraic structures is studied. An algebraic structure is considered and set of all simultaneous solutions of a system of equations is called the algebraic set. It is found that the category of algebraic sets over a L-structure and the category of coordinate algebras of algebraic sets are dually equivalent. Any non-empty algebraic set Y over an equationally Noetherian algebraic structure is a finite union of irreducible algebraic sets, then this decomposition is unique up to the order of the components. A structure is said to be separated by a structure if for every predicate symbol and every elements, there exists an L-homomorphism. A precise definition of direct systems and their direct limits is given using the language of diagram-formulas.
引用
收藏
页码:545 / 547
页数:3
相关论文
共 50 条
  • [21] A clonoid based approach to some finiteness results in universal algebraic geometry
    Erhard Aichinger
    Bernardo Rossi
    Algebra universalis, 2020, 81
  • [22] A clonoid based approach to some finiteness results in universal algebraic geometry
    Aichinger, Erhard
    Rossi, Bernardo
    ALGEBRA UNIVERSALIS, 2020, 81 (01)
  • [23] Universal Hyperbolic Geometry, Sydpoints and Finite Fields: A Projective and Algebraic Alternative
    Wildberger, Norman J.
    UNIVERSE, 2018, 4 (01):
  • [24] Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
    E. Y. U. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Algebra and Logic, 2019, 57 : 414 - 428
  • [25] Algebraic Geometry Over Algebraic Structures. IX. Principal Universal Classes and Dis-Limits
    Daniyarova, E. Yu.
    Myasnikov, A. G.
    Remeslennikov, V. N.
    ALGEBRA AND LOGIC, 2019, 57 (06) : 414 - 428
  • [26] Algebraic geometry
    van der Waerden, B. L.
    MATHEMATISCHE ANNALEN, 1938, 115 : 330 - 332
  • [27] ALGEBRAIC GEOMETRY
    DIEUDONN.J
    ADVANCES IN MATHEMATICS, 1969, 3 (03) : 233 - &
  • [28] Applications of Algebraic Combinatorics to Algebraic Geometry
    Kazhdan, David
    Ziegler, Tamar
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2021, 32 (06): : 1412 - 1428
  • [29] Algebraic Geometry versus Kahler geometry
    Voisin, Claire
    MILAN JOURNAL OF MATHEMATICS, 2010, 78 (01) : 85 - 116
  • [30] Dagger geometry as Banach algebraic geometry
    Bambozzi, Federico
    Ben-Bassat, Oren
    JOURNAL OF NUMBER THEORY, 2016, 162 : 391 - 462