Universal Hyperbolic Geometry, Sydpoints and Finite Fields: A Projective and Algebraic Alternative

被引:1
|
作者
Wildberger, Norman J. [1 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
来源
UNIVERSE | 2018年 / 4卷 / 01期
关键词
rational trigonometry; universal hyperbolic geometry; sydpoints; finite fields; TRIGONOMETRY;
D O I
10.3390/universe4010003
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Universal hyperbolic geometry gives a purely algebraic approach to the subject that connects naturally with Einstein's special theory of relativity. In this paper, we give an overview of some aspects of this theory relating to triangle geometry and in particular the remarkable new analogues of midpoints called sydpoints. We also discuss how the generality allows us to consider hyperbolic geometry over general fields, in particular over finite fields.
引用
收藏
页数:10
相关论文
共 50 条
  • [2] Projective constructions in hyperbolic geometry
    Grossmann, M
    MATHEMATISCHE ANNALEN, 1910, 68 : 141 - 144
  • [3] Universal Algebraic Geometry
    Daniyarova, E. Yu.
    Myasnikov, A. G.
    Remeslennikov, V. N.
    DOKLADY MATHEMATICS, 2011, 84 (01) : 545 - 547
  • [4] Universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Doklady Mathematics, 2011, 84 : 545 - 547
  • [5] LDPC Codes from Projective Algebraic Sets over Finite Fields
    Hu, Wanbao
    Wu, Yanxia
    Wang, Zhen
    Cai, Huaping
    2010 6TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS NETWORKING AND MOBILE COMPUTING (WICOM), 2010,
  • [6] SOME RESULTS ON QUADRICS IN FINITE PROJECTIVE GEOMETRY BASED ON GALOIS FIELDS
    RAYCHAUDHURI, DK
    CANADIAN JOURNAL OF MATHEMATICS, 1962, 14 (01): : 129 - &
  • [7] Two constructions of A-codes from projective geometry in finite fields
    Chen Shangdi
    Zhang Xiaollian
    Ma Hao
    The Journal of China Universities of Posts and Telecommunications, 2015, 22 (02) : 52 - 59
  • [8] Universal Algebraic Geometry with Relation ≠
    A. N. Shevlyakov
    Algebra and Logic, 2016, 55 : 330 - 339
  • [9] Dimension in universal algebraic geometry
    E. Yu. Daniyarova
    A. G. Myasnikov
    V. N. Remeslennikov
    Doklady Mathematics, 2014, 90 : 450 - 452
  • [10] Universal Algebraic Geometry with Relation ≠
    Shevlyakov, A. N.
    ALGEBRA AND LOGIC, 2016, 55 (04) : 330 - 339