Universal Algebraic Geometry

被引:4
|
作者
Daniyarova, E. Yu. [1 ]
Myasnikov, A. G. [1 ]
Remeslennikov, V. N. [1 ]
机构
[1] Stevens Inst Technol, Dept Math Sci, Schaefer Sch Engn & Sci, Hoboken, NJ 07030 USA
基金
俄罗斯基础研究基金会;
关键词
Algebraic Geometry; Algebraic Structure; DOKLADY Mathematic; Atomic Formula; Predicate Symbol;
D O I
10.1134/S1064562411050073
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Universal algebraic geometry over concrete algebraic structures is studied. An algebraic structure is considered and set of all simultaneous solutions of a system of equations is called the algebraic set. It is found that the category of algebraic sets over a L-structure and the category of coordinate algebras of algebraic sets are dually equivalent. Any non-empty algebraic set Y over an equationally Noetherian algebraic structure is a finite union of irreducible algebraic sets, then this decomposition is unique up to the order of the components. A structure is said to be separated by a structure if for every predicate symbol and every elements, there exists an L-homomorphism. A precise definition of direct systems and their direct limits is given using the language of diagram-formulas.
引用
收藏
页码:545 / 547
页数:3
相关论文
共 50 条
  • [31] Algebraic Geometry II
    Szabo, Szilard
    ACTA SCIENTIARUM MATHEMATICARUM, 2016, 82 (3-4): : 696 - 697
  • [32] Derived algebraic geometry
    Toen, Bertrand
    EMS SURVEYS IN MATHEMATICAL SCIENCES, 2014, 1 (02) : 153 - 240
  • [33] RUDIMENTS OF ALGEBRAIC GEOMETRY
    MATTUCK, A
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 438 - &
  • [34] A perspective on algebraic geometry
    Abhyankar, SS
    BULLETIN BRAZILIAN MATHEMATICAL SOCIETY, 2002, 33 (02): : 177 - 199
  • [35] An invitation to algebraic geometry
    Marc Chardin
    The Mathematical Intelligencer, 2004, 26 (4) : 71 - 72
  • [36] Introduction to algebraic geometry
    Hajnal, Peter
    ACTA SCIENTIARUM MATHEMATICARUM, 2007, 73 (3-4): : 892 - 893
  • [37] A perspective on algebraic geometry
    Shreeram S. Abhyankar
    Bulletin of the Brazilian Mathematical Society, 2002, 33 : 177 - 199
  • [38] Points in algebraic geometry
    Gabber, Ofer
    Kelly, Shane
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (10) : 4667 - 4680
  • [39] Euler and algebraic geometry
    Totaro, Burt
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (04) : 541 - 559
  • [40] Stability in Algebraic Geometry
    Georgoulas, Valentina
    Robbin, Joel W.
    Salamon, Dietmar A.
    MOMENT-WEIGHT INEQUALITY AND THE HILBERT-MUMFORD CRITERION: GIT FROM THE DIFFERENTIAL GEOMETRIC VIEWPOINT, 2021, 2297 : 59 - 63