Pro-p completions of groups of cohomological dimension 2

被引:1
|
作者
Kochloukova, Dessislava H. [1 ]
机构
[1] State Univ Campinas UNICAMP, Dept Math, BR-13083859 Campinas, SP, Brazil
关键词
Pro-p completion; cohomological dimension; limit group; POINCARE-DUALITY GROUPS; DIOPHANTINE GEOMETRY; ELEMENTARY THEORY; GROUPS I; PROFINITE;
D O I
10.1142/S0218196716500235
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study when an abstract finitely presented group G of cohomological dimension cd(G) = 2 has pro-p completion (G) over cap (p) of cohomological dimension cd((G) over cap (p)) <= 2. Furthermore, we prove that for a tree hyperbolic limit group G we have cd((G) over cap (p)) <= 2 and show an example of a hyperbolic limit group G that is not free and (G) over cap (p) is free pro-p. For a finitely generated residually free group G that is not a limit group, we show that (G) over cap (p) is not free pro-p.
引用
收藏
页码:551 / 564
页数:14
相关论文
共 50 条
  • [21] On accessibility for pro-p groups
    Wilkes, Gareth
    JOURNAL OF ALGEBRA, 2019, 525 : 1 - 18
  • [22] Cyclic splittings of pro-p groups
    Berdugo, Jesus
    Zalesskii, Pavel
    JOURNAL OF ALGEBRA, 2024, 660 : 291 - 309
  • [23] Subdirect products of pro-p groups
    Kochloukova, Dessislava H.
    Zalesskii, Pavel A.
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2015, 158 (02) : 289 - 303
  • [24] Computing pro-p Galois groups
    Boston, Nigel
    Nover, Harris
    ALGORITHMIC NUMBER THEORY, PROCEEDINGS, 2006, 4076 : 1 - 10
  • [25] Embedding theorems for pro-p groups
    King, JD
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 123 : 217 - 226
  • [26] On pro-p groups with potent filtrations
    Moravec, Primoz
    JOURNAL OF ALGEBRA, 2009, 322 (01) : 254 - 258
  • [27] p-adics and pro-p groups
    Camina, R
    EUROPEAN WOMEN IN MATHEMATICS, 1999, : 99 - 100
  • [28] Homological finiteness properties of pro-p modules over metabelian pro-p groups
    Pinto, Aline G. S.
    JOURNAL OF ALGEBRA, 2006, 301 (01) : 96 - 111
  • [29] A pro-p version of Sela's accessibility and Poincaré duality pro-p groups
    Castellano, Ilaria
    Zalesskii, Pavel A.
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (04) : 1349 - 1368
  • [30] Virtually free pro-p groups
    Wolfgang Herfort
    Pavel Zalesskii
    Publications mathématiques de l'IHÉS, 2013, 118 : 193 - 211