Generalization of Bullen-Simpson's 3/8 inequality

被引:4
|
作者
Matic, M
Pecaric, J
Vukelic, A
机构
[1] Univ Split, Dept Math, FESB, Split 21000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 41000, Croatia
[3] Univ Zagreb, Fac Food Technol & Biotechnol, Dept Math, Zagreb 41000, Croatia
关键词
Bullen-Simpson's 3/8 inequality; quadrature formulae; functions of bounded variation; Lipschitzian functions;
D O I
10.1016/j.mcm.2004.06.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generalization of Bullen-Simpson's 3/8 inequality for (2r)-convex functions is given, by using some Euler-type identities. A number of inequalities, for functions whose derivatives are either functions of bounded variation or Lipschitzian functions or functions in L-p-spaces, are proved. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 483
页数:21
相关论文
共 50 条
  • [41] Generalization of Hilbert's integral inequality
    Brnetic, I
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 199 - 205
  • [42] About a generalization of Bell's inequality
    González-Robles, VM
    FOUNDATIONS OF PHYSICS, 2003, 33 (05) : 839 - 853
  • [43] A NEW GENERALIZATION OF NESBITT'S INEQUALITY
    Batinetu-Giurgiu, Dumitru M.
    Stanciu, Neculai
    JOURNAL OF SCIENCE AND ARTS, 2013, (03): : 255 - 260
  • [44] A generalization of Bessel's inequality and Parseval's identity
    Gunawan H.
    Periodica Mathematica Hungarica, 2002, 44 (2) : 177 - 181
  • [45] A note to Ujevic's generalization of Ostrowski's inequality
    Wu, QB
    Yang, SJ
    APPLIED MATHEMATICS LETTERS, 2005, 18 (06) : 657 - 665
  • [46] On generalization of Levinson’s inequality involving averages of 3-convex functions
    G. Aras-Gazić
    J. Pečarić
    A. Vukelić
    Journal of Inequalities and Applications, 2023
  • [47] L-stable Simpson's 3/8 rule and Burgers' equation
    Pandey, K.
    Verma, Lajja
    Verma, Amit K.
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (04) : 1342 - 1352
  • [48] On generalization of Levinson's inequality involving averages of 3-convex functions
    Aras-Gazic, G.
    Pecaric, J.
    Vukelic, A.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2023, 2023 (01)
  • [49] A generalization of an Erdős inequality connected to n!
    Jean-Luc Chabert
    Aequationes mathematicae, 2009, 77 : 243 - 258
  • [50] Generalization of Samuelson's inequality and location of eigenvalues
    Sharma, R.
    Saini, R.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2015, 125 (01): : 103 - 111