Generalization of Bullen-Simpson's 3/8 inequality

被引:4
|
作者
Matic, M
Pecaric, J
Vukelic, A
机构
[1] Univ Split, Dept Math, FESB, Split 21000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 41000, Croatia
[3] Univ Zagreb, Fac Food Technol & Biotechnol, Dept Math, Zagreb 41000, Croatia
关键词
Bullen-Simpson's 3/8 inequality; quadrature formulae; functions of bounded variation; Lipschitzian functions;
D O I
10.1016/j.mcm.2004.06.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generalization of Bullen-Simpson's 3/8 inequality for (2r)-convex functions is given, by using some Euler-type identities. A number of inequalities, for functions whose derivatives are either functions of bounded variation or Lipschitzian functions or functions in L-p-spaces, are proved. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 483
页数:21
相关论文
共 50 条
  • [31] A GENERALIZATION OF QI'S INEQUALITY FOR SUMS
    Shi, Huan-nan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2010, 33 : 101 - 106
  • [32] Next generalization of Cirtoaje's inequality
    Matejicka, Ladislav
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [33] About a Generalization of Bell's Inequality
    V. M. González-Robles
    Foundations of Physics, 2003, 33 : 839 - 853
  • [34] A generalization of Ivan Prodanov's inequality
    Atanassov, Krassimir T.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2015, 21 (04) : 70 - 73
  • [35] On a further generalization of Steffensen's inequality
    Gauchman, H
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2000, 5 (05) : 505 - 513
  • [36] On sharpening and generalization of Rivlin's inequality
    Kumar, Prasanna
    Milovanovic, Gradimir, V
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (04) : 1436 - 1445
  • [37] A further generalization of Hilbert's inequality
    Montgomery, HL
    Vaaler, JD
    MATHEMATIKA, 1999, 46 (91) : 35 - 39
  • [38] A GENERALIZATION OF JORDAN'S INEQUALITY AND AN APPLICATION
    Huo, Zhen-Hong
    Niu, Da-Wei
    Cao, Jian
    Qi, Feng
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (01): : 53 - 61
  • [39] A GENERALIZATION OF THE HILBERT'S TYPE INEQUALITY
    Xi, Gaowen
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (04): : 1501 - 1510
  • [40] REMARKS ON A GENERALIZATION OF BERNSTEIN,S INEQUALITY
    PLESNIAK, W
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (19): : 1211 - 1213