Generalization of Bullen-Simpson's 3/8 inequality

被引:4
|
作者
Matic, M
Pecaric, J
Vukelic, A
机构
[1] Univ Split, Dept Math, FESB, Split 21000, Croatia
[2] Univ Zagreb, Fac Text Technol, Zagreb 41000, Croatia
[3] Univ Zagreb, Fac Food Technol & Biotechnol, Dept Math, Zagreb 41000, Croatia
关键词
Bullen-Simpson's 3/8 inequality; quadrature formulae; functions of bounded variation; Lipschitzian functions;
D O I
10.1016/j.mcm.2004.06.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Generalization of Bullen-Simpson's 3/8 inequality for (2r)-convex functions is given, by using some Euler-type identities. A number of inequalities, for functions whose derivatives are either functions of bounded variation or Lipschitzian functions or functions in L-p-spaces, are proved. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:463 / 483
页数:21
相关论文
共 50 条
  • [21] A Generalization of Leuenberger's Inequality
    Lukarevski, Martin
    AMERICAN MATHEMATICAL MONTHLY, 2020, 127 (01): : 88 - 89
  • [22] Redesigning of Lotka's Law with Simpson's 3/8 Rule
    Basu, Anindya
    Dutta, Bidyarthi
    JOURNAL OF SCIENTOMETRIC RESEARCH, 2023, 12 (01) : 197 - 203
  • [23] A GENERALIZATION OF MUIRHEAD'S INEQUALITY
    Paris, J. B.
    Vencovska, A.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2009, 3 (02): : 181 - 187
  • [24] A further generalization of Aczel's inequality and Popoviciu's inequality
    Wu, Shanhe
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2007, 10 (03): : 565 - 573
  • [25] Exponential Generalization of Newman's Inequality and Klamkin's Inequality
    石焕南
    Northeastern Mathematical Journal, 2005, (04) : 431 - 438
  • [26] Weighted generalization of Rado's inequality and Popoviciu's inequality
    Wu, Shanhe
    Debnath, Lokenath
    APPLIED MATHEMATICS LETTERS, 2008, 21 (04) : 313 - 319
  • [27] On Maligranda's generalization of Jensen's inequality
    Pecaric, JE
    Veljan, D
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 200 (01) : 121 - 125
  • [28] On a generalization of Busemann's intersection inequality
    Yaskin, Vladyslav
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (08)
  • [29] STEFFENSEN'S GENERALIZATION OF CEBYSEV INEQUALITY
    Awan, K. M.
    Pecaric, J.
    Rehman, Atiq Ur
    Journal of Mathematical Inequalities, 2015, 9 (01): : 155 - 163
  • [30] A Generalization Of Refined Young's Inequality
    Ighachane, Mohamed Amine
    Akkouchi, Mohamed
    APPLIED MATHEMATICS E-NOTES, 2022, 22 : 731 - 740