Relativistic effects in the chaotic Sitnikov problem

被引:10
|
作者
Kovacs, T. [1 ,2 ]
Bene, Gy. [3 ]
Tel, T. [3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Hungarian Acad Sci, Konkoly Observ, H-1525 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Theoret Phys, H-1117 Budapest, Hungary
关键词
chaos; relativistic processes; scattering; methods: numerical; celestial mechanics; FRACTAL BASIN BOUNDARIES; PERIODIC-ORBITS; SCATTERING; MOTIONS; SINGULARITIES;
D O I
10.1111/j.1365-2966.2011.18546.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the phase-space structure of the relativistic Sitnikov problem in the first post-Newtonian approximation. The phase-space portraits show a strong dependence on the gravitational radius which describes the strength of the relativistic pericentre advance. Bifurcations appearing at various gravitational radii are presented. Transient chaotic behaviour related to escapes from the primaries is also studied. Finally, the numerically determined chaotic saddle is investigated in the context of hyperbolic and non-hyperbolic dynamics as a function of the gravitational radius.
引用
收藏
页码:2275 / 2281
页数:7
相关论文
共 50 条
  • [41] The Sitnikov problem for several primary bodies configurations
    Gastón Beltritti
    Fernando Mazzone
    Martina Oviedo
    Celestial Mechanics and Dynamical Astronomy, 2018, 130
  • [42] The Sitnikov Problem Investigation with the Method of Multiple Scales
    Ali Dehghan Manshadi
    Mojtaba Dehghan Manshadi
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1471 - 1477
  • [43] INVARIANT ROTATIONAL CURVES IN SITNIKOV'S PROBLEM
    Martinez Alfaro, J.
    Chiralt, Cristina
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 55 (04): : 351 - 367
  • [44] The Sitnikov problem for several primary bodies configurations
    Beltritti, Gaston
    Mazzone, Fernando
    Oviedo, Martina
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2018, 130 (07):
  • [45] The Sitnikov Problem Investigation with the Method of Multiple Scales
    Manshadi, Ali Dehghan
    Manshadi, Mojtaba Dehghan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1471 - 1477
  • [46] On Dumbbell Motions in the Generalized Circular Sitnikov Problem
    Krasilnikov, P. S.
    Baikov, A. E.
    COSMIC RESEARCH, 2024, 62 (03) : 302 - 309
  • [47] Sitnikov problem in the square configuration: elliptic case
    M. Shahbaz Ullah
    Astrophysics and Space Science, 2016, 361
  • [48] Stability of motion in the Sitnikov 3-body problem
    Soulis, P.
    Bountis, T.
    Dvorak, R.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 99 (02): : 129 - 148
  • [49] Stability Analysis of an Equilibrium Position in the Photogravitational Sitnikov Problem
    Bardin, B. S.
    Avdushkin, A. N.
    EIGHTH POLYAKHOV'S READING, 2018, 1959
  • [50] Stability and bifurcations of even periodic orbits in the Sitnikov problem
    Jorge Galán-Vioque
    Daniel Nuñez
    Andrés Rivera
    Camila Riccio
    Celestial Mechanics and Dynamical Astronomy, 2018, 130