Relativistic effects in the chaotic Sitnikov problem

被引:10
|
作者
Kovacs, T. [1 ,2 ]
Bene, Gy. [3 ]
Tel, T. [3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Hungarian Acad Sci, Konkoly Observ, H-1525 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Theoret Phys, H-1117 Budapest, Hungary
关键词
chaos; relativistic processes; scattering; methods: numerical; celestial mechanics; FRACTAL BASIN BOUNDARIES; PERIODIC-ORBITS; SCATTERING; MOTIONS; SINGULARITIES;
D O I
10.1111/j.1365-2966.2011.18546.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the phase-space structure of the relativistic Sitnikov problem in the first post-Newtonian approximation. The phase-space portraits show a strong dependence on the gravitational radius which describes the strength of the relativistic pericentre advance. Bifurcations appearing at various gravitational radii are presented. Transient chaotic behaviour related to escapes from the primaries is also studied. Finally, the numerically determined chaotic saddle is investigated in the context of hyperbolic and non-hyperbolic dynamics as a function of the gravitational radius.
引用
收藏
页码:2275 / 2281
页数:7
相关论文
共 50 条
  • [21] A COMPUTER AIDED ANALYSIS OF THE SITNIKOV PROBLEM
    Hagel, Johannes
    Trenkler, Thomas
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (1-2): : 81 - 98
  • [22] NUMERICAL RESULTS TO THE SITNIKOV-PROBLEM
    Dvorak, R.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1993, 56 (1-2): : 71 - 80
  • [23] Periodic solutions of a generalized Sitnikov problem
    Beltritti, Gaston
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2021, 133 (02):
  • [24] A global analysis of the generalized Sitnikov problem
    Chesley, SR
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 1999, 73 (1-4): : 291 - 302
  • [25] UNIFORM SUBHARMONIC ORBITS FOR SITNIKOV PROBLEM
    Robinson, Clark
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (04): : 647 - 652
  • [26] Symmetric periodic solutions in the Sitnikov problem
    Ortega, Rafael
    ARCHIV DER MATHEMATIK, 2016, 107 (04) : 405 - 412
  • [27] Sitnikov problem in the cyclic kite configuration
    M. Shahbaz Ullah
    K. B. Bhatnagar
    M. R. Hassan
    Astrophysics and Space Science, 2014, 354 : 301 - 309
  • [28] A Global Analysis of the Generalized Sitnikov Problem
    Steven R. Chesley
    Celestial Mechanics and Dynamical Astronomy, 1999, 73 : 291 - 302
  • [29] The concentric Sitnikov problem: Circular case
    Ullah, M. Shahbaz
    Idrisi, M. Javed
    CHAOS SOLITONS & FRACTALS, 2023, 174
  • [30] On the families of periodic orbits of the Sitnikov problem
    Llibre, Jaume
    Ortega, Rafael
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2008, 7 (02): : 561 - 576