Relativistic effects in the chaotic Sitnikov problem

被引:10
|
作者
Kovacs, T. [1 ,2 ]
Bene, Gy. [3 ]
Tel, T. [3 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Hungarian Acad Sci, Konkoly Observ, H-1525 Budapest, Hungary
[3] Eotvos Lorand Univ, Dept Theoret Phys, H-1117 Budapest, Hungary
关键词
chaos; relativistic processes; scattering; methods: numerical; celestial mechanics; FRACTAL BASIN BOUNDARIES; PERIODIC-ORBITS; SCATTERING; MOTIONS; SINGULARITIES;
D O I
10.1111/j.1365-2966.2011.18546.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We investigate the phase-space structure of the relativistic Sitnikov problem in the first post-Newtonian approximation. The phase-space portraits show a strong dependence on the gravitational radius which describes the strength of the relativistic pericentre advance. Bifurcations appearing at various gravitational radii are presented. Transient chaotic behaviour related to escapes from the primaries is also studied. Finally, the numerically determined chaotic saddle is investigated in the context of hyperbolic and non-hyperbolic dynamics as a function of the gravitational radius.
引用
收藏
页码:2275 / 2281
页数:7
相关论文
共 50 条
  • [31] Symmetric periodic solutions in the Sitnikov problem
    Rafael Ortega
    Archiv der Mathematik, 2016, 107 : 405 - 412
  • [32] Sitnikov five-body problem with combined effects of radiation pressure and oblateness
    Ullah, M. Shahbaz
    Idrisi, M. Javed
    Sharma, Binay Kumar
    Kaur, Charanpreet
    NEW ASTRONOMY, 2021, 87
  • [33] Chaotic amplification in the relativistic restricted three-body problem
    Wanex, LF
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2003, 58 (01): : 13 - 22
  • [34] The photo-gravitational concentric Sitnikov problem
    Idrisi, M. Javed
    Ullah, M. Shahbaz
    ASTRONOMY AND COMPUTING, 2023, 45
  • [35] THE EXISTENCE OF TRANSVERSE HOMOCLINIC POINTS IN THE SITNIKOV PROBLEM
    DANKOWICZ, H
    HOLMES, P
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 116 (02) : 468 - 483
  • [36] A high order perturbation analysis of the Sitnikov problem
    Hagel, J
    Lhotka, C
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2005, 93 (1-4): : 201 - 228
  • [37] On the periodic orbits of the circular double Sitnikov problem
    Jimenez Perez, Hugo
    Lacomba, Ernesto A.
    COMPTES RENDUS MATHEMATIQUE, 2009, 347 (5-6) : 333 - 336
  • [38] The structure of the extended phase space of the Sitnikov problem
    Kovacs, T.
    Erdi, B.
    ASTRONOMISCHE NACHRICHTEN, 2007, 328 (08) : 801 - 804
  • [39] Sitnikov problem in the square configuration: elliptic case
    Ullah, M. Shahbaz
    ASTROPHYSICS AND SPACE SCIENCE, 2016, 361 (05)
  • [40] A High Order Perturbation Analysis of the Sitnikov Problem
    Johannes Hagel
    Christoph Lhotka
    Celestial Mechanics and Dynamical Astronomy, 2005, 93 : 201 - 228