C3SRAM: In-Memory-Computing SRAM Macro Based on Capacitive-Coupling Computing

被引:40
|
作者
Jiang, Zhewei [1 ]
Yin, Shihui [2 ]
Seo, Jae-Sun [2 ]
Seok, Mingoo [1 ]
机构
[1] Columbia Univ, Elect Engn Dept, New York, NY 10027 USA
[2] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
来源
IEEE SOLID-STATE CIRCUITS LETTERS | 2019年 / 2卷 / 09期
关键词
Capacitive coupling; in-memory-computing (IMC); machine learning accelerator; mixed-signal processing; neural network;
D O I
10.1109/LSSC.2019.2934831
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This letter presents C3SRAM, an in-memory-computing SRAM macro, which utilizes analog-mixed-signal capacitive-coupling computing to perform XNOR-and-accumulate operations for binary deep neural networks. The 256 x 64 C3SRAM macro asserts all 256 rows simultaneously and equips one ADC per column, realizing fully parallel vector-matrix multiplication in one cycle. C3SRAM demonstrates 672 TOPS/W and 1638 GOPS, and achieves 98.3% accuracy for MNIST and 85.5% for CIFAR-10 dataset. It achieves 3975x smaller energy-delay product than conventional digital processors.
引用
收藏
页码:131 / 134
页数:4
相关论文
共 50 条
  • [1] C3SRAM: In-Memory-Computing SRAM Macro Based on Capacitive-Coupling Computing
    Jiang, Zhewei
    Yin, Shihui
    Seo, Jae-Sun
    Seok, Mingoo
    IEEE 45TH EUROPEAN SOLID STATE CIRCUITS CONFERENCE (ESSCIRC 2019), 2019, : 131 - +
  • [2] C3SRAM: An In-Memory-Computing SRAM Macro Based on Robust Capacitive Coupling Computing Mechanism
    Jiang, Zhewei
    Yin, Shihui
    Seo, Jae-Sun
    Seok, Mingoo
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2020, 55 (07) : 1888 - 1897
  • [3] SRAM-based In-Memory-Computing for AI edge devices
    Xu, Weidong
    Lou, Mian
    Xie, Chengmin
    Li, Li
    Shi, Zhu
    Gong, Longqing
    THIRD INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION; NETWORK AND COMPUTER TECHNOLOGY (ECNCT 2021), 2022, 12167
  • [4] An Energy Consumption Model for SRAM-Based In-Memory-Computing Architectures
    Akgul, Berke
    Karalar, Tufan Coskun
    ELECTRONICS, 2024, 13 (06)
  • [5] A 16Kb Transpose 6T SRAM In-Memory-Computing Macro based on Robust Charge-Domain Computing
    Song, Jiahao
    Wang, Yuan
    Tang, Xiyuan
    Wang, Runsheng
    Huang, Ru
    IEEE ASIAN SOLID-STATE CIRCUITS CONFERENCE (A-SSCC 2021), 2021,
  • [6] XNOR-SRAM: In-Bitcell Computing SRAM Macro based on Resistive Computing Mechanism
    Jiang, Zhewei
    Yin, Shihui
    Seo, Jae-sun
    Seok, Mingoo
    GLSVLSI '19 - PROCEEDINGS OF THE 2019 ON GREAT LAKES SYMPOSIUM ON VLSI, 2019, : 417 - 422
  • [7] Design of In-Memory Computing Enabled SRAM Macro
    Monga, Kanika
    Behera, Sunit
    Chaturvedi, Nitin
    Gurunarayanan, S.
    2022 IEEE 19TH INDIA COUNCIL INTERNATIONAL CONFERENCE, INDICON, 2022,
  • [8] A Computing-in-Memory SRAM Macro Based on Fully-Capacitive-Coupling With Hierarchical Capacity Attenuator for 4-b MAC Operation
    Xiao, Kanglin
    Cui, Xiaoxin
    Qiao, Xin
    Pan, Nanbing
    Wang, Xin'An
    Wang, Yuan
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2551 - 2555
  • [9] A Multi-Bit In-Memory-Computing SRAM Macro Using Column-Wise Charge Redistribution for DNN Inference in Edge Computing Devices
    Chae, Changseon
    Kim, Subin
    Choi, Jonghang
    Park, Jun-Eun
    18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, : 421 - 422
  • [10] A Charge-domain 10T SRAM based In-Memory-Computing Macro for Low Energy and Highly Accurate DNN inference
    Kim, Joonhyung
    Park, Jongsun
    18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, : 89 - 90