Precision and convergence speed of the ensemble Kalman filter-based parameter estimation: setting parameter uncertainty for reliable and efficient estimation

被引:1
|
作者
Sueki, Kenta [1 ,2 ]
Nishizawa, Seiya [1 ]
Yamaura, Tsuyoshi [1 ,3 ]
Tomita, Hirofumi [1 ,2 ]
机构
[1] RIKEN Ctr Computat Sci, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[2] RIKEN Cluster Pioneering Res, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[3] Kobe Univ, Res Ctr Urban Safety & Secur, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
关键词
Parameter estimation; Data assimilation; Ensemble Kalman filter; Atmospheric model; Cloud microphysics; Deep convective system; ESTIMATING MODEL PARAMETERS; DATA ASSIMILATION; STATE;
D O I
10.1186/s40645-022-00504-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Determining physical process parameters in atmospheric models is critical to obtaining accurate weather and climate simulations; estimating optimal parameters is essential for reducing model error. Recently, automatic parameter estimation using the ensemble Kalman filter (EnKF) has been tested instead of conventional manual parameter tuning. To maintain uncertainty for the parameters to be estimated and avoid filter divergence in EnKF-based methods, some inflation techniques should be applied to parameter ensemble spread (ES). When ES is kept constant through the estimation using an inflation technique, the precision and convergence speed of the estimation vary depending on the ES assigned to estimated parameters. However, there is debate over how to determine an appropriate constant ES for estimated parameters in terms of precision and convergence speed. This study examined the dependence of precision and convergence speed of an estimated parameter on the ES to establish a reliable and efficient method for EnKF-based parameter estimation. This was carried out by conducting idealized experiments targeting a parameter in a cloud microphysics scheme. In the experiments, there was a threshold value for ES where any smaller values did not result in any further improvements to the estimation precision, which enabled the determination of the optimal ES in terms of precision. On the other hand, the convergence speed accelerates monotonically as ES increases. To generalize the precision and convergence speed, we approximated the time series of parameter estimation with a first-order autoregression (AR(1)) model. We demonstrated that the precision and convergence speed may be quantified by two parameters from the AR(1) model: the autoregressive parameter and the amplitude of random perturbation. As the ES increases, the autoregressive parameter decreases, while the random perturbation amplitude increases. The estimation precision was determined based on the balance between the two values. The AR(1) approximation provides quantitative guidelines to determine the optimal ES for the precision and convergence speed of the EnKF-based parameter estimation.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] PARAMETER ESTIMATION FOR GARCH(1, 1) MODELS BASED ON KALMAN FILTER
    Allal, Jelloul
    Benmoumen, Mohammed
    ADVANCES AND APPLICATIONS IN STATISTICS, 2011, 25 (02) : 115 - 130
  • [42] Vehicle Parameter Estimation with Kalman Filter Disturbance Observer
    Oei, Marius
    Sawodny, Oliver
    IFAC PAPERSONLINE, 2022, 55 (27): : 497 - 502
  • [43] Lung model parameter estimation by unscented Kalman filter
    Saatci, Esra
    Akan, Aydin
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 2556 - +
  • [44] Modal parameter estimation using interacting Kalman filter
    Zghal, Meriem
    Mevel, Laurent
    Del Moral, Pierre
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 139 - 150
  • [45] Improved rotor speed estimation using two Kalman filter-based algorithms
    Salvatore, L
    Stasi, S
    Cupertino, F
    CONFERENCE RECORD OF THE 2001 IEEE INDUSTRY APPLICATIONS CONFERENCE, VOLS 1-4, 2001, : 125 - 132
  • [46] Development of the consider cubature Kalman filter for state estimation of hydrological models with parameter uncertainty
    Sun, Y.
    Bao, W.
    Qu, S.
    Li, Q.
    Jiang, P.
    Zhou, Z.
    Shi, P.
    JOURNAL OF HYDROLOGY, 2023, 625
  • [47] State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter
    Zhang, Hongjuan
    Franssen, Harrie-Jan Hendricks
    Han, Xujun
    Vrugt, Jasper A.
    Vereecken, Harry
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2017, 21 (09) : 4927 - 4958
  • [48] Reliable uncertainty evaluation for ODE parameter estimation - a comparison
    Eichstaedt, S.
    Elster, C.
    2ND INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCES 2013 (IC-MSQUARE 2013), 2014, 490
  • [49] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [50] Joint state and parameter estimation of quadrotor based on extended Kalman filter and complementary filter
    Janusz, Wojciech
    Niezabitowski, Michal
    PROCEEDINGS OF THE 2016 17TH INTERNATIONAL CARPATHIAN CONTROL CONFERENCE (ICCC), 2016, : 274 - 279