Precision and convergence speed of the ensemble Kalman filter-based parameter estimation: setting parameter uncertainty for reliable and efficient estimation

被引:1
|
作者
Sueki, Kenta [1 ,2 ]
Nishizawa, Seiya [1 ]
Yamaura, Tsuyoshi [1 ,3 ]
Tomita, Hirofumi [1 ,2 ]
机构
[1] RIKEN Ctr Computat Sci, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[2] RIKEN Cluster Pioneering Res, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[3] Kobe Univ, Res Ctr Urban Safety & Secur, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
关键词
Parameter estimation; Data assimilation; Ensemble Kalman filter; Atmospheric model; Cloud microphysics; Deep convective system; ESTIMATING MODEL PARAMETERS; DATA ASSIMILATION; STATE;
D O I
10.1186/s40645-022-00504-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Determining physical process parameters in atmospheric models is critical to obtaining accurate weather and climate simulations; estimating optimal parameters is essential for reducing model error. Recently, automatic parameter estimation using the ensemble Kalman filter (EnKF) has been tested instead of conventional manual parameter tuning. To maintain uncertainty for the parameters to be estimated and avoid filter divergence in EnKF-based methods, some inflation techniques should be applied to parameter ensemble spread (ES). When ES is kept constant through the estimation using an inflation technique, the precision and convergence speed of the estimation vary depending on the ES assigned to estimated parameters. However, there is debate over how to determine an appropriate constant ES for estimated parameters in terms of precision and convergence speed. This study examined the dependence of precision and convergence speed of an estimated parameter on the ES to establish a reliable and efficient method for EnKF-based parameter estimation. This was carried out by conducting idealized experiments targeting a parameter in a cloud microphysics scheme. In the experiments, there was a threshold value for ES where any smaller values did not result in any further improvements to the estimation precision, which enabled the determination of the optimal ES in terms of precision. On the other hand, the convergence speed accelerates monotonically as ES increases. To generalize the precision and convergence speed, we approximated the time series of parameter estimation with a first-order autoregression (AR(1)) model. We demonstrated that the precision and convergence speed may be quantified by two parameters from the AR(1) model: the autoregressive parameter and the amplitude of random perturbation. As the ES increases, the autoregressive parameter decreases, while the random perturbation amplitude increases. The estimation precision was determined based on the balance between the two values. The AR(1) approximation provides quantitative guidelines to determine the optimal ES for the precision and convergence speed of the EnKF-based parameter estimation.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Filter-Based Online System-Parameter Estimation for Multicopter UAVs
    Boehm, Christoph
    Scheiber, Martin
    Weiss, Stephan
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [32] Parameter Estimation and Convergence Analysis for a Class of Canonical Dynamic Systems by Extended Kalman Filter
    Wei, Ping
    Xia, Bin
    Luo, Xionglin
    CONFERENCE PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON CONTROL SCIENCE AND SYSTEMS ENGINEERING (ICCSSE), 2017, : 336 - 340
  • [33] Effective Barrage Noise Jamming for Spotlight SAR Using Extended Kalman Filter-Based Kinematic Parameter Estimation
    Lee, Haemin
    Kim, Ki-Wan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6579 - 6600
  • [34] Unscented Kalman Filter-Based Robust State and Parameter Estimation for Free Radical Polymerization of Styrene with Variable Parameters
    Zhang, Zhenhui
    Zhang, Zhengjiang
    Hong, Zhihui
    POLYMERS, 2022, 14 (05)
  • [35] Vehicle state and parameter estimation based on improved extend Kalman filter
    Liu, Yingjie
    Cui, Dawei
    Peng, Wen
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2023, 11 (04) : 496 - 508
  • [36] Parameter estimation of rotary inverted pendulum based on unscented kalman filter
    Zheng, Min
    Ikeda, Kenji
    Shimomura, Takao
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 3157 - +
  • [37] Kalman filter-aided correlation for parameter estimation
    Tonda, SG
    Huignard, JP
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 1997, 1997, 3163 : 204 - 213
  • [38] Using the Kalman filter for parameter estimation in biogeochemical models
    Trudinger, C. M.
    Raupach, M. R.
    Rayner, P. J.
    Enting, I. G.
    ENVIRONMETRICS, 2008, 19 (08) : 849 - 870
  • [39] Series Compensated Transmission Line Parameter Estimation Based on Kalman Filter
    Zhang, Yiqi
    Liao, Yuan
    IEEE SOUTHEASTCON 2020, 2020,
  • [40] Online parameter estimation of cold plate based on extended Kalman filter
    Jiang, Hongsheng
    Dong, Sujun
    Li, Aicheng
    Meng, Fanxin
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 1850 - 1855