Precision and convergence speed of the ensemble Kalman filter-based parameter estimation: setting parameter uncertainty for reliable and efficient estimation

被引:1
|
作者
Sueki, Kenta [1 ,2 ]
Nishizawa, Seiya [1 ]
Yamaura, Tsuyoshi [1 ,3 ]
Tomita, Hirofumi [1 ,2 ]
机构
[1] RIKEN Ctr Computat Sci, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[2] RIKEN Cluster Pioneering Res, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[3] Kobe Univ, Res Ctr Urban Safety & Secur, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
关键词
Parameter estimation; Data assimilation; Ensemble Kalman filter; Atmospheric model; Cloud microphysics; Deep convective system; ESTIMATING MODEL PARAMETERS; DATA ASSIMILATION; STATE;
D O I
10.1186/s40645-022-00504-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Determining physical process parameters in atmospheric models is critical to obtaining accurate weather and climate simulations; estimating optimal parameters is essential for reducing model error. Recently, automatic parameter estimation using the ensemble Kalman filter (EnKF) has been tested instead of conventional manual parameter tuning. To maintain uncertainty for the parameters to be estimated and avoid filter divergence in EnKF-based methods, some inflation techniques should be applied to parameter ensemble spread (ES). When ES is kept constant through the estimation using an inflation technique, the precision and convergence speed of the estimation vary depending on the ES assigned to estimated parameters. However, there is debate over how to determine an appropriate constant ES for estimated parameters in terms of precision and convergence speed. This study examined the dependence of precision and convergence speed of an estimated parameter on the ES to establish a reliable and efficient method for EnKF-based parameter estimation. This was carried out by conducting idealized experiments targeting a parameter in a cloud microphysics scheme. In the experiments, there was a threshold value for ES where any smaller values did not result in any further improvements to the estimation precision, which enabled the determination of the optimal ES in terms of precision. On the other hand, the convergence speed accelerates monotonically as ES increases. To generalize the precision and convergence speed, we approximated the time series of parameter estimation with a first-order autoregression (AR(1)) model. We demonstrated that the precision and convergence speed may be quantified by two parameters from the AR(1) model: the autoregressive parameter and the amplitude of random perturbation. As the ES increases, the autoregressive parameter decreases, while the random perturbation amplitude increases. The estimation precision was determined based on the balance between the two values. The AR(1) approximation provides quantitative guidelines to determine the optimal ES for the precision and convergence speed of the EnKF-based parameter estimation.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Research and application of parameter estimation method in hydrological model based on dual ensemble Kalman filter
    Lu, Mengtian
    Lu, Sicheng
    Liao, Weihong
    Lei, Xiaohui
    Yin, Zhaokai
    Wang, Hao
    HYDROLOGY RESEARCH, 2022, 53 (01): : 65 - 84
  • [22] Parameter estimation for heat transfer analysis during casting processes based on ensemble Kalman filter
    Oka, Yukimi
    Ohno, Munekazu
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 149
  • [23] Application of Kalman filter for state and parameter estimation
    Fan, Wenbing
    Chen, Da
    Zhengzhou Daxue Xuebao/Journal of Zhengzhou University, 2002, 34 (04):
  • [24] PARAMETER-ESTIMATION VIA KALMAN FILTER
    AIDALA, VJ
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (03) : 471 - 472
  • [25] Kalman filter-based wind speed estimation for wind turbine control
    Dongran Song
    Jian Yang
    Mi Dong
    Young Hoon Joo
    International Journal of Control, Automation and Systems, 2017, 15 : 1089 - 1096
  • [26] Kalman Filter-based Wind Speed Estimation for Wind Turbine Control
    Song, Dongran
    Yang, Jian
    Dong, Mi
    Joo, Young Hoon
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2017, 15 (03) : 1089 - 1096
  • [27] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    ELSheikh, A. H.
    Pain, C. C.
    Fang, F.
    Gomes, J. L. M. A.
    Navon, I. M.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2013, 27 (04) : 877 - 897
  • [28] Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter
    Annan, JD
    Hargreaves, JC
    Edwards, NR
    Marsh, R
    OCEAN MODELLING, 2005, 8 (1-2) : 135 - 154
  • [29] Dual state-parameter estimation of hydrological models using ensemble Kalman filter
    Moradkhani, H
    Sorooshian, S
    Gupta, HV
    Houser, PR
    ADVANCES IN WATER RESOURCES, 2005, 28 (02) : 135 - 147
  • [30] Parameter estimation of subsurface flow models using iterative regularized ensemble Kalman filter
    A. H. ELSheikh
    C. C. Pain
    F. Fang
    J. L. M. A. Gomes
    I. M. Navon
    Stochastic Environmental Research and Risk Assessment, 2013, 27 : 877 - 897