Precision and convergence speed of the ensemble Kalman filter-based parameter estimation: setting parameter uncertainty for reliable and efficient estimation

被引:1
|
作者
Sueki, Kenta [1 ,2 ]
Nishizawa, Seiya [1 ]
Yamaura, Tsuyoshi [1 ,3 ]
Tomita, Hirofumi [1 ,2 ]
机构
[1] RIKEN Ctr Computat Sci, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[2] RIKEN Cluster Pioneering Res, Chuo Ku, 7-1-26 Minatojima Minami Machi, Kobe, Hyogo 6500047, Japan
[3] Kobe Univ, Res Ctr Urban Safety & Secur, Nada Ku, 1-1 Rokkodai Cho, Kobe, Hyogo 6578501, Japan
关键词
Parameter estimation; Data assimilation; Ensemble Kalman filter; Atmospheric model; Cloud microphysics; Deep convective system; ESTIMATING MODEL PARAMETERS; DATA ASSIMILATION; STATE;
D O I
10.1186/s40645-022-00504-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Determining physical process parameters in atmospheric models is critical to obtaining accurate weather and climate simulations; estimating optimal parameters is essential for reducing model error. Recently, automatic parameter estimation using the ensemble Kalman filter (EnKF) has been tested instead of conventional manual parameter tuning. To maintain uncertainty for the parameters to be estimated and avoid filter divergence in EnKF-based methods, some inflation techniques should be applied to parameter ensemble spread (ES). When ES is kept constant through the estimation using an inflation technique, the precision and convergence speed of the estimation vary depending on the ES assigned to estimated parameters. However, there is debate over how to determine an appropriate constant ES for estimated parameters in terms of precision and convergence speed. This study examined the dependence of precision and convergence speed of an estimated parameter on the ES to establish a reliable and efficient method for EnKF-based parameter estimation. This was carried out by conducting idealized experiments targeting a parameter in a cloud microphysics scheme. In the experiments, there was a threshold value for ES where any smaller values did not result in any further improvements to the estimation precision, which enabled the determination of the optimal ES in terms of precision. On the other hand, the convergence speed accelerates monotonically as ES increases. To generalize the precision and convergence speed, we approximated the time series of parameter estimation with a first-order autoregression (AR(1)) model. We demonstrated that the precision and convergence speed may be quantified by two parameters from the AR(1) model: the autoregressive parameter and the amplitude of random perturbation. As the ES increases, the autoregressive parameter decreases, while the random perturbation amplitude increases. The estimation precision was determined based on the balance between the two values. The AR(1) approximation provides quantitative guidelines to determine the optimal ES for the precision and convergence speed of the EnKF-based parameter estimation.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Precision and convergence speed of the ensemble Kalman filter-based parameter estimation: setting parameter uncertainty for reliable and efficient estimation
    Kenta Sueki
    Seiya Nishizawa
    Tsuyoshi Yamaura
    Hirofumi Tomita
    Progress in Earth and Planetary Science, 9
  • [2] Exponential convergence of the Kalman filter based parameter estimation algorithm
    Cao, LY
    Schwartz, HM
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2003, 17 (10) : 763 - 783
  • [3] USV Parameter Estimation: Adaptive Unscented Kalman Filter-Based Approach
    Shen, Han
    Wen, Guanghui
    Lv, Yuezu
    Zhou, Jun
    Wang, Linan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (06) : 7751 - 7761
  • [4] Modified Ensemble Kalman filter for reservoir parameter and state estimation in the presence of model uncertainty
    Akter, Farhana
    Imtiaz, Syed
    Zendehboudi, Sohrab
    Hossain, Kamal
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 199
  • [5] An Inequality Constrained Ensemble Kalman Filter for Parameter Estimation Application
    Goh, Shu Ting
    Soon, Jing Jun
    Low, Kay-Soon
    2018 IEEE AEROSPACE CONFERENCE, 2018,
  • [6] Parameter estimation in an atmospheric GCM using the Ensemble Kalman Filter
    Annan, JD
    Lunt, DJ
    Hargreaves, JC
    Valdes, PJ
    NONLINEAR PROCESSES IN GEOPHYSICS, 2005, 12 (03) : 363 - 371
  • [7] Constrained Dual Ensemble Kalman Filter for State and Parameter Estimation
    Bavdekar, Vinay A.
    Prakash, J.
    Shah, Sirish L.
    Gopaluni, R. Bhushan
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 3093 - 3098
  • [8] Groundwater parameter estimation using the ensemble Kalman filter with localization
    Nan, Tongchao
    Wu, Jichun
    HYDROGEOLOGY JOURNAL, 2011, 19 (03) : 547 - 561
  • [9] Spatial variability of geomechanical parameter, estimation via ensemble kalman filter
    Zhao, Hong-Liang
    Feng, Xia-Ting
    Zhang, Dong-Xiao
    Zhou, Hui
    Yantu Lixue/Rock and Soil Mechanics, 2007, 28 (10): : 2219 - 2223
  • [10] Spatial variability of geomechanical parameter estimation via ensemble kalman filter
    Zhao Hong-liang
    Feng Xia-ting
    Zhang Dong-xiao
    Zhou Hui
    ROCK AND SOIL MECHANICS, 2007, 28 (10) : 2219 - +