Isometric Tensor Network States in Two Dimensions

被引:75
|
作者
Zaletel, Michael P. [1 ]
Pollmann, Frank [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Tech Univ Munich, Phys Dept, T42, D-85747 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
MATRIX RENORMALIZATION-GROUP; ENTANGLEMENT;
D O I
10.1103/PhysRevLett.124.037201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz. First, we show that a matrix-product state representation of a 2D quantum state can be iteratively transformed into an isometric 2D TNS. Second, we introduce a 21) version of the time-evolving block decimation algorithm for approximating of the ground state of a Hamiltonian as an isometric TNS-which we demonstrate for the 2D transverse field Ising model.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Monte Carlo simulation with tensor network states
    Wang, Ling
    Pizorn, Iztok
    Verstraete, Frank
    PHYSICAL REVIEW B, 2011, 83 (13):
  • [42] Algebraically contractible topological tensor network states
    Denny, S. J.
    Biamonte, J. D.
    Jaksch, D.
    Clark, S. R.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (01)
  • [43] Quantum Machine Learning Tensor Network States
    Kardashin, Andrey
    Uvarov, Alexey
    Biamonte, Jacob
    FRONTIERS IN PHYSICS, 2021, 8
  • [44] Fermionic Orbital Optimization in Tensor Network States
    Krumnow, C.
    Veis, L.
    Legeza, O.
    Eisert, J.
    PHYSICAL REVIEW LETTERS, 2016, 117 (21)
  • [45] Efficient adiabatic preparation of tensor network states
    Wei, Zhi-Yuan
    Malz, Daniel
    Cirac, J. Ignacio
    PHYSICAL REVIEW RESEARCH, 2023, 5 (02):
  • [46] Topology of paired states in two dimensions
    Quader, KF
    Volcko, D
    CONDENSED MATTER THEORIES, VOL 16, 2001, 16 : 349 - 357
  • [47] Gluonic states in two space dimensions
    Karl, G
    Paton, J
    PHYSICAL REVIEW D, 2000, 61 (07):
  • [48] Studying dynamics in two-dimensional Quantum lattices using tree tensor network states
    Kloss, Benedikt
    Reichman, David
    Bar Lev, Yevgeny
    SCIPOST PHYSICS, 2020, 9 (05):
  • [49] Tensor-network strong-disorder renormalization groups for random quantum spin systems in two dimensions
    Seki, Kouichi
    Hikihara, Toshiya
    Okunishi, Kouichi
    PHYSICAL REVIEW B, 2020, 102 (14)
  • [50] Extension operators on tensor product structures in two and three dimensions
    Beuchler, S
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05): : 1776 - 1795