Isometric Tensor Network States in Two Dimensions

被引:75
|
作者
Zaletel, Michael P. [1 ]
Pollmann, Frank [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Tech Univ Munich, Phys Dept, T42, D-85747 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
MATRIX RENORMALIZATION-GROUP; ENTANGLEMENT;
D O I
10.1103/PhysRevLett.124.037201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz. First, we show that a matrix-product state representation of a 2D quantum state can be iteratively transformed into an isometric 2D TNS. Second, we introduce a 21) version of the time-evolving block decimation algorithm for approximating of the ground state of a Hamiltonian as an isometric TNS-which we demonstrate for the 2D transverse field Ising model.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Neural Network Representation of Tensor Network and Chiral States
    Huang, Yichen
    Moore, Joel E.
    PHYSICAL REVIEW LETTERS, 2021, 127 (17)
  • [32] Energy-momentum tensor improvements in two dimensions
    Deser, S
    Jackiw, R
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (13-14): : 1499 - 1506
  • [33] Two dimensions and two states in DNA nanotechnology
    Seeman, NC
    Liu, FR
    Mao, CD
    Yang, XP
    Wenzler, LA
    Sha, RJ
    Sun, WQ
    Shen, ZY
    Li, XJ
    Qi, J
    Zhang, YW
    Fu, TJ
    Chen, JH
    Winfree, E
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2000, : 253 - 262
  • [34] Tensor network renormalization study on the crossover in classical Heisenberg and RP2 models in two dimensions
    Ueda, Atsushi
    Oshikawa, Masaki
    PHYSICAL REVIEW E, 2022, 106 (01)
  • [35] Generalization of the exponential basis for tensor network representations of long-range interactions in two and three dimensions
    Li, Zhendong
    O'Rourke, Matthew J.
    Chan, Garnet Kin-Lic
    PHYSICAL REVIEW B, 2019, 100 (15)
  • [36] ISOMETRIC REFLECTIONS IN TWO DIMENSIONS AND DUAL L1-STRUCTURES
    Garcia-Pacheco, Francisco J.
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (06) : 1275 - 1289
  • [37] Second Renormalization of Tensor-Network States
    Xie, Z. Y.
    Jiang, H. C.
    Chen, Q. N.
    Weng, Z. Y.
    Xiang, T.
    PHYSICAL REVIEW LETTERS, 2009, 103 (16)
  • [38] Plaquette renormalization scheme for tensor network states
    Wang, Ling
    Kao, Ying-Jer
    Sandvik, Anders W.
    PHYSICAL REVIEW E, 2011, 83 (05):
  • [39] Continuous Tensor Network States for Quantum Fields
    Tilloy, Antoine
    Cirac, J. Ignacio
    PHYSICAL REVIEW X, 2019, 9 (02)
  • [40] On the stability of topological order in tensor network states
    Williamson, Dominic J.
    Delcamp, Clement
    Verstraete, Frank
    Schuch, Norbert
    PHYSICAL REVIEW B, 2021, 104 (23)