共 50 条
Isometric Tensor Network States in Two Dimensions
被引:75
|作者:
Zaletel, Michael P.
[1
]
Pollmann, Frank
[2
,3
]
机构:
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Tech Univ Munich, Phys Dept, T42, D-85747 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
基金:
美国国家科学基金会;
欧洲研究理事会;
关键词:
MATRIX RENORMALIZATION-GROUP;
ENTANGLEMENT;
D O I:
10.1103/PhysRevLett.124.037201
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz. First, we show that a matrix-product state representation of a 2D quantum state can be iteratively transformed into an isometric 2D TNS. Second, we introduce a 21) version of the time-evolving block decimation algorithm for approximating of the ground state of a Hamiltonian as an isometric TNS-which we demonstrate for the 2D transverse field Ising model.
引用
收藏
页数:5
相关论文