Isometric Tensor Network States in Two Dimensions

被引:75
|
作者
Zaletel, Michael P. [1 ]
Pollmann, Frank [2 ,3 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Tech Univ Munich, Phys Dept, T42, D-85747 Garching, Germany
[3] Munich Ctr Quantum Sci & Technol, D-80799 Munich, Germany
基金
美国国家科学基金会; 欧洲研究理事会;
关键词
MATRIX RENORMALIZATION-GROUP; ENTANGLEMENT;
D O I
10.1103/PhysRevLett.124.037201
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Tensor-network states (TNS) are a promising but numerically challenging tool for simulating two-dimensional (2D) quantum many-body problems. We introduce an isometric restriction of the TNS ansatz that allows for highly efficient contraction of the network. We consider two concrete applications using this ansatz. First, we show that a matrix-product state representation of a 2D quantum state can be iteratively transformed into an isometric 2D TNS. Second, we introduce a 21) version of the time-evolving block decimation algorithm for approximating of the ground state of a Hamiltonian as an isometric TNS-which we demonstrate for the 2D transverse field Ising model.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Two-dimensional isometric tensor networks on an infinite strip
    Wu, Yantao
    Anand, Sajant
    Lin, Sheng-Hsuan
    Pollmann, Frank
    Zaletel, Michael P.
    PHYSICAL REVIEW B, 2023, 107 (24)
  • [22] Scalable tensor network algorithm for thermal quantum many-body systems in two dimensions
    Zhang, Meng
    Zhang, Hao
    Wang, Chao
    He, Lixin
    PHYSICAL REVIEW B, 2025, 111 (07)
  • [23] Symmetries and field tensor network states
    Gasull, Albert
    Tilloy, Antoine
    Cirac, J. Ignacio
    Sierra, German
    PHYSICAL REVIEW B, 2023, 107 (15)
  • [24] Quantum compression of tensor network states
    Bai, Ge
    Yang, Yuxiang
    Chiribella, Giulio
    NEW JOURNAL OF PHYSICS, 2020, 22 (04):
  • [25] Preparation and verification of tensor network states
    Cruz, Esther
    Baccari, Flavio
    Tura, Jordi
    Schuch, Norbert
    Cirac, J. Ignacio
    PHYSICAL REVIEW RESEARCH, 2022, 4 (02):
  • [26] Simulated annealing for tensor network states
    Iblisdir, S.
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [27] Renormalization of tensor-network states
    Zhao, H. H.
    Xie, Z. Y.
    Chen, Q. N.
    Wei, Z. C.
    Cai, J. W.
    Xiang, T.
    PHYSICAL REVIEW B, 2010, 81 (17):
  • [28] Multigrid Algorithms for Tensor Network States
    Dolfi, Michele
    Bauer, Bela
    Troyer, Matthias
    Ristivojevic, Zoran
    PHYSICAL REVIEW LETTERS, 2012, 109 (02)
  • [29] A hierarchy of topological tensor network states
    Buerschaper, Oliver
    Martin Mombelli, Juan
    Christandl, Matthias
    Aguado, Miguel
    JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (01)
  • [30] Isometric tensor network optimization for extensive Hamiltonians is free of barren plateaus
    Miao, Qiang
    Barthel, Thomas
    PHYSICAL REVIEW A, 2024, 109 (05)