Deep learning-based super-resolution in coherent imaging systems

被引:116
|
作者
Liu, Tairan [1 ,2 ,3 ]
de Haan, Kevin [1 ,2 ,3 ]
Rivenson, Yair [1 ,2 ,3 ]
Wei, Zhensong [1 ]
Zeng, Xin [1 ]
Zhang, Yibo [1 ,2 ,3 ]
Ozcan, Aydogan [1 ,2 ,3 ,4 ]
机构
[1] Univ Calif Los Angeles, Elect & Comp Engn Dept, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Bioengn Dept, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif NanoSyst Inst CNSI, Los Angeles, CA 90095 USA
[4] Univ Calif Los Angeles, David Geffen Sch Med, Dept Surg, Los Angeles, CA 90095 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
WIDE-FIELD; PIXEL SUPERRESOLUTION; DIGITAL HOLOGRAPHY; PHASE RETRIEVAL; MICROSCOPY; LOCALIZATION; RECOVERY;
D O I
10.1038/s41598-019-40554-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a deep learning framework based on a generative adversarial network (GAN) to perform super-resolution in coherent imaging systems. We demonstrate that this framework can enhance the resolution of both pixel size-limited and diffraction-limited coherent imaging systems. The capabilities of this approach are experimentally validated by super-resolving complex-valued images acquired using a lensfree on-chip holographic microscope, the resolution of which was pixel size-limited. Using the same GAN-based approach, we also improved the resolution of a lens-based holographic imaging system that was limited in resolution by the numerical aperture of its objective lens. This deep learning-based super-resolution framework can be broadly applied to enhance the space-bandwidth product of coherent imaging systems using image data and convolutional neural networks, and provides a rapid, non-iterative method for solving inverse image reconstruction or enhancement problems in optics.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] ITERATIVE KERNEL RECONSTRUCTION FOR DEEP LEARNING-BASED BLIND IMAGE SUPER-RESOLUTION
    Yildirim, Suleyman
    Ates, Hasan F.
    Gunturk, Bahadir K.
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 3251 - 3255
  • [42] Visual and quantitative evaluation of microcalcifications in mammograms with deep learning-based super-resolution
    Honjo, Takashi
    Ueda, Daiju
    Katayama, Yutaka
    Shimazaki, Akitoshi
    Jogo, Atsushi
    Kageyama, Ken
    Murai, Kazuki
    Tatekawa, Hiroyuki
    Fukumoto, Shinya
    Yamamoto, Akira
    Miki, Yukio
    EUROPEAN JOURNAL OF RADIOLOGY, 2022, 154
  • [43] Does Deep Learning-Based Super-Resolution Help Humans With Face Recognition?
    Velan, Erik
    Fontani, Marco
    Carrato, Sergio
    Jerian, Martino
    FRONTIERS IN SIGNAL PROCESSING, 2022, 2
  • [44] Deep Learning-Based Super-Resolution Reconstruction and Marker Detection for Drone Landing
    Noi Quang Truong
    Phong Ha Nguyen
    Nam, Se Hyun
    Park, Kang Ryoung
    IEEE ACCESS, 2019, 7 : 61639 - 61655
  • [45] Super-resolution of magnetic systems using deep learning
    D. B. Lee
    H. G. Yoon
    S. M. Park
    J. W. Choi
    G. Chen
    H. Y. Kwon
    C. Won
    Scientific Reports, 13
  • [46] Super-resolution of magnetic systems using deep learning
    Lee, D. B.
    Yoon, H. G.
    Park, S. M.
    Choi, J. W.
    Chen, G.
    Kwon, H. Y.
    Won, C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [47] Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging
    CHANG QIAO
    HAOYU CHEN
    RUN WANG
    TAO JIANG
    YUWANG WANG
    DONG LI
    Photonics Research, 2024, 12 (03) : 474 - 484
  • [48] Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging
    Qiao, Chang
    Chen, Haoyu
    Wang, Run
    Jiang, Tao
    Wang, Yuwang
    Li, Dong
    PHOTONICS RESEARCH, 2024, 12 (03) : 474 - 484
  • [49] Learning-Based Quality Assessment for Image Super-Resolution
    Zhao, Tiesong
    Lin, Yuting
    Xu, Yiwen
    Chen, Weiling
    Wang, Zhou
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3570 - 3581
  • [50] Fast Learning-Based Single Image Super-Resolution
    Kumar, Neeraj
    Sethi, Amit
    IEEE TRANSACTIONS ON MULTIMEDIA, 2016, 18 (08) : 1504 - 1515