Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging

被引:6
|
作者
Qiao, Chang [1 ,2 ]
Chen, Haoyu [3 ,4 ]
Wang, Run [1 ]
Jiang, Tao [3 ,4 ]
Wang, Yuwang [5 ]
Li, Dong [3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Inst Brain & Cognit Sci, Beijing 100084, Peoples R China
[3] Inst Biophys, Chinese Acad Sci, CAS Ctr Excellence Biomacromol, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[4] Univ Chinese Acad Sci, Coll Life Sci, Beijing 100049, Peoples R China
[5] Tsinghua Univ, Beijing Natl Res Ctr Informat Sci & Technol, Beijing 100084, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
24;
D O I
10.1364/PRJ.506778
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical aberrations degrade the performance of fluorescence microscopy. Conventional adaptive optics (AO) leverages specific devices, such as the Shack-Hartmann wavefront sensor and deformable mirror, to measure and correct optical aberrations. However, conventional AO requires either additional hardware or a more complicated imaging procedure, resulting in higher cost or a lower acquisition speed. In this study, we proposed a novel space-frequency encoding network (SFE-Net) that can directly estimate the aberrated point spread functions (PSFs) from biological images, enabling fast optical aberration estimation with high accuracy without engaging extra optics and image acquisition. We showed that with the estimated PSFs, the optical aberration can be computationally removed by the deconvolution algorithm. Furthermore, to fully exploit the benefits of SFE-Net, we incorporated the estimated PSF with neural network architecture design to devise an aberration-aware deeplearning super-resolution model, dubbed SFT-DFCAN. We demonstrated that the combination of SFE-Net and SFT-DFCAN enables instant digital AO and optical aberration-aware super-resolution reconstruction for live-cell imaging. (c) 2024 Chinese Laser Press
引用
收藏
页码:474 / 484
页数:11
相关论文
共 50 条
  • [1] Deep learning-based optical aberration estimation enables offline digital adaptive optics and super-resolution imaging
    CHANG QIAO
    HAOYU CHEN
    RUN WANG
    TAO JIANG
    YUWANG WANG
    DONG LI
    Photonics Research, 2024, 12 (03) : 474 - 484
  • [2] Deep learning-based super-resolution in coherent imaging systems
    Liu, Tairan
    de Haan, Kevin
    Rivenson, Yair
    Wei, Zhensong
    Zeng, Xin
    Zhang, Yibo
    Ozcan, Aydogan
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Deep learning-based super-resolution in coherent imaging systems
    Tairan Liu
    Kevin de Haan
    Yair Rivenson
    Zhensong Wei
    Xin Zeng
    Yibo Zhang
    Aydogan Ozcan
    Scientific Reports, 9
  • [4] Deep learning-based point-scanning super-resolution imaging
    Fang, Linjing
    Monroe, Fred
    Novak, Sammy Weiser
    Kirk, Lyndsey
    Schiavon, Cara R.
    Yu, Seungyoon B.
    Zhang, Tong
    Wu, Melissa
    Kastner, Kyle
    Latif, Alaa Abdel
    Lin, Zijun
    Shaw, Andrew
    Kubota, Yoshiyuki
    Mendenhall, John
    Zhang, Zhao
    Pekkurnaz, Gulcin
    Harris, Kristen
    Howard, Jeremy
    Manor, Uri
    NATURE METHODS, 2021, 18 (04) : 406 - +
  • [5] Deep Learning-Based Point-Scanning Super-Resolution Imaging
    Manor, Uri
    Fang, Linjing
    Howard, Jeremy
    Monroe, Fred
    Weiser, Sammy
    Kastner, Kyle
    Kirk, Lyndsey
    Harris, Kristen
    Pekkurnaz, Gulcin
    Yoon, Blenda
    Schiavon, Cara
    Zhang, Tong
    FASEB JOURNAL, 2020, 34
  • [6] Deep learning-based point-scanning super-resolution imaging
    Linjing Fang
    Fred Monroe
    Sammy Weiser Novak
    Lyndsey Kirk
    Cara R. Schiavon
    Seungyoon B. Yu
    Tong Zhang
    Melissa Wu
    Kyle Kastner
    Alaa Abdel Latif
    Zijun Lin
    Andrew Shaw
    Yoshiyuki Kubota
    John Mendenhall
    Zhao Zhang
    Gulcin Pekkurnaz
    Kristen Harris
    Jeremy Howard
    Uri Manor
    Nature Methods, 2021, 18 : 406 - 416
  • [7] Deep Learning-based Face Super-resolution: A Survey
    Jiang, Junjun
    Wang, Chenyang
    Liu, Xianming
    Ma, Jiayi
    ACM COMPUTING SURVEYS, 2023, 55 (01)
  • [8] Adaptive Blurring Estimation for Learning-Based Super Resolution
    Chen, Y. W.
    Taniguchi, K.
    Han, X. H.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL APPLICATIONS (CISIA 2015), 2015, 18 : 655 - 658
  • [9] Adaptive optics improves multiphoton super-resolution imaging
    Zheng W.
    Wu Y.
    Winter P.
    Fischer R.
    Nogare D.D.
    Hong A.
    McCormick C.
    Christensen R.
    Dempsey W.P.
    Arnold D.B.
    Zimmerberg J.
    Chitnis A.
    Sellers J.
    Waterman C.
    Shroff H.
    Nature Methods, 2017, 14 (9) : 869 - 872
  • [10] Super-resolution Microscopy with Adaptive Optics for Volumetric Imaging
    Park, Sangjun
    Min, Cheol Hong
    Han, Seokyoung
    Choi, Eunjin
    Cho, Kyung-Ok
    Jang, Hyun-Jong
    Kim, Moonseok
    CURRENT OPTICS AND PHOTONICS, 2022, 6 (06) : 550 - 564