Super-resolution of magnetic systems using deep learning

被引:0
|
作者
D. B. Lee
H. G. Yoon
S. M. Park
J. W. Choi
G. Chen
H. Y. Kwon
C. Won
机构
[1] Kyung Hee University,Department of Physics
[2] Korea University,Department of Battery
[3] Korea Institute of Science and Technology,Smart Factory
[4] Nanjing University,Center for Spintronics
[5] Collaborative Innovation Center of Advanced Microstructures,National Laboratory of Solid State Microstructures and Department of Physics
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We construct a deep neural network to enhance the resolution of spin structure images formed by spontaneous symmetry breaking in the magnetic systems. Through the deep neural network, an image is expanded to a super-resolution image and reduced to the original image size to be fitted with the input feed image. The network does not require ground truth images in the training process. Therefore, it can be applied when low-resolution images are provided as training datasets, while high-resolution images are not obtainable due to the intrinsic limitation of microscope techniques. To show the usefulness of the network, we train the network with two types of simulated magnetic structure images; one is from self-organized maze patterns made of chiral magnetic structures, and the other is from magnetic domains separated by walls that are topological defects of the system. The network successfully generates high-resolution images highly correlated with the exact solutions in both cases. To investigate the effectiveness and the differences between datasets, we study the network’s noise tolerance and compare the networks’ reliabilities. The network is applied with experimental data obtained by magneto-optical Kerr effect microscopy and spin-polarized low-energy electron microscopy.
引用
收藏
相关论文
共 50 条
  • [1] Super-resolution of magnetic systems using deep learning
    Lee, D. B.
    Yoon, H. G.
    Park, S. M.
    Choi, J. W.
    Chen, G.
    Kwon, H. Y.
    Won, C.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Deep Depth Super-Resolution: Learning Depth Super-Resolution Using Deep Convolutional Neural Network
    Song, Xibin
    Dai, Yuchao
    Qin, Xueying
    COMPUTER VISION - ACCV 2016, PT IV, 2017, 10114 : 360 - 376
  • [3] Omnidirectional Video Super-Resolution Using Deep Learning
    Baniya, Arbind Agrahari
    Lee, Tsz-Kwan
    Eklund, Peter W.
    Aryal, Sunil
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 540 - 554
  • [4] Super-resolution musculoskeletal MRI using deep learning
    Chaudhari, Akshay S.
    Fang, Zhongnan
    Kogan, Feliks
    Wood, Jeff
    Stevens, Kathryn J.
    Gibbons, Eric K.
    Lee, Jin Hyung
    Gold, Garry E.
    Hargreaves, Brian A.
    MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (05) : 2139 - 2154
  • [5] Super-resolution of Solar Magnetograms Using Deep Learning
    Fengping Dou
    Long Xu
    Zhixiang Ren
    Dong Zhao
    Xinze Zhang
    ResearchinAstronomyandAstrophysics, 2022, 22 (08) : 220 - 231
  • [6] Super-resolution of Solar Magnetograms Using Deep Learning
    Dou, Fengping
    Xu, Long
    Ren, Zhixiang
    Zhao, Dong
    Zhang, Xinze
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2022, 22 (08)
  • [7] Lightweight Super-Resolution Using Deep Neural Learning
    Jiang, Zhuqing
    Zhu, Honghui
    Lu, Yue
    Ju, Guodong
    Men, Aidong
    IEEE TRANSACTIONS ON BROADCASTING, 2020, 66 (04) : 814 - 823
  • [8] Deep learning for image super-resolution
    Yang, Wenming
    Zhou, Fei
    Zhu, Rui
    Fukui, Kazuhiro
    Wang, Guijin
    Xue, Jing-Hao
    NEUROCOMPUTING, 2020, 398 (398) : 291 - 292
  • [9] Super-Resolution Reconstruction of Magnetic Resonance Image Based on Deep Learning
    Pan Mengxue
    Qu Ning
    Xia Yeru
    Yang Deyong
    Wang Hongyu
    Liu Wenlong
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (22)
  • [10] Remote Sensing Image Super-Resolution using Deep Learning
    Rajeshwari, P.
    Priya, Pamujula Lakshmi
    Pooja, M.
    Abhishek, G.
    2024 IEEE SPACE, AEROSPACE AND DEFENCE CONFERENCE, SPACE 2024, 2024, : 665 - 668