Tuning-fork-based piezoresponse force microscopy

被引:6
|
作者
Labardi, M. [1 ]
Capaccioli, S. [1 ,2 ,3 ]
机构
[1] Univ Pisa, Phys Dept, Sede Secondaria Pisa, CNR,IPCF, Largo Pontecorvo 3, I-56127 Pisa, Italy
[2] Univ Pisa, Phys Dept, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] Univ Pisa, Ctr Integraz Strumentaz, CISUP, Lungarno Pacinotti 43, I-56126 Pisa, Italy
关键词
piezoresponse force microscopy; quartz tuning-fork; piezoelectricity; FERROELECTRIC DOMAIN-STRUCTURE; TRIGLYCINE SULFATE; SURFACE-CHARGE; PHASE-TRANSITION; FREQUENCY; MODE; MODULATION; RESOLUTION; CONTRAST;
D O I
10.1088/1361-6528/ac1634
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface displacements of a few picometers, occurring after application of an electric potential to piezoelectric materials, can be detected and mapped with nanometer-scale lateral resolution by scanning probe methods, the most notable being piezoresponse force microscopy (PFM). Yet, absolute determination of such displacements, giving access for instance to materials' piezoelectric coefficients, are hindered by both mechanical and electrostatic side-effects, requiring complex experimental and/or post-processing procedures for carrying out reliable results. The employment of quartz tuning-fork force sensors in an intermittent contact mode PFM is able to provide measurements of electrically-induced surface displacements that are not influenced by electrostatic side-effects typical of more conventional cantilever-based PFM. The method is shown to yield piezoeffect mapping on standard ferroelectric test crystals (periodically-poled lithium niobate and triglycine sulfate), as well as on a ferroelectric polymer (PVDF), with no visible influence from the applied dc electric potential.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Depth resolution in piezoresponse force microscopy
    Roeper, Matthias
    Seddon, Samuel D.
    Amber, Zeeshan H.
    Ruesing, Michael
    Eng, Lukas M.
    JOURNAL OF APPLIED PHYSICS, 2024, 135 (22)
  • [32] Piezoresponse force microscopy and nanoferroic phenomena
    Gruverman, Alexei
    Alexe, Marin
    Meier, Dennis
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [33] Depth resolution of piezoresponse force microscopy
    Johann, Florian
    Ying, Yongjun J.
    Jungk, Tobias
    Hoffmann, Akos
    Sones, Collin L.
    Eason, Robert W.
    Mailis, Sakellaris
    Soergel, Elisabeth
    APPLIED PHYSICS LETTERS, 2009, 94 (17)
  • [34] High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork
    Giessibl, FJ
    APPLIED PHYSICS LETTERS, 1998, 73 (26) : 3956 - 3958
  • [35] Dynamics of quartz tuning fork force sensors used in scanning probe microscopy
    Castellanos-Gomez, A.
    Agrait, N.
    Rubio-Bollinger, G.
    NANOTECHNOLOGY, 2009, 20 (21)
  • [36] Atomic force microscopy of nickel dot arrays with tuning fork and nanotube probe
    Rozhok, S
    Jung, S
    Chandrasekhar, V
    Lin, XW
    Dravid, VP
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (01): : 323 - 325
  • [37] Calibration of the oscillation amplitude of quartz tuning fork-based force sensors with astigmatic displacement microscopy
    Zhang, Bi-Qin
    Ma, Fei-Cen
    Xu, Jia-Nan
    Ren, Dou-Dou
    Zhou, Dan
    Pan, Ting
    Zhou, Lei
    Pu, Qiaosheng
    Zeng, Zhi-Cong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (01):
  • [38] Equivalent Electromechanical Model for Quartz Tuning Fork Used in Atomic Force Microscopy
    Lin, Rui
    Qian, Jianqiang
    Li, Yingzi
    Cheng, Peng
    Wang, Cheng
    Li, Lei
    Gao, Xiaodong
    Sun, Wendong
    SENSORS, 2023, 23 (08)
  • [39] Low-temperature scanning force microscopy using a tuning fork transducer
    Seo, Yongho
    Cadden-Zimansky, Paul
    Chandrasekhar, Venkat
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2007, 50 (02) : 378 - 383
  • [40] Dual-Probe Atomic Force Microscopy based on tuning fork probes for critical dimension metrology
    Zheng, Zhiyue
    Gao, Sitian
    Li, Wei
    Liu, Xiaojun
    Shi, Yushu
    Chen, Cheng
    ULTRAMICROSCOPY, 2020, 219