Tuning-fork-based piezoresponse force microscopy

被引:6
|
作者
Labardi, M. [1 ]
Capaccioli, S. [1 ,2 ,3 ]
机构
[1] Univ Pisa, Phys Dept, Sede Secondaria Pisa, CNR,IPCF, Largo Pontecorvo 3, I-56127 Pisa, Italy
[2] Univ Pisa, Phys Dept, Largo Pontecorvo 3, I-56127 Pisa, Italy
[3] Univ Pisa, Ctr Integraz Strumentaz, CISUP, Lungarno Pacinotti 43, I-56126 Pisa, Italy
关键词
piezoresponse force microscopy; quartz tuning-fork; piezoelectricity; FERROELECTRIC DOMAIN-STRUCTURE; TRIGLYCINE SULFATE; SURFACE-CHARGE; PHASE-TRANSITION; FREQUENCY; MODE; MODULATION; RESOLUTION; CONTRAST;
D O I
10.1088/1361-6528/ac1634
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Surface displacements of a few picometers, occurring after application of an electric potential to piezoelectric materials, can be detected and mapped with nanometer-scale lateral resolution by scanning probe methods, the most notable being piezoresponse force microscopy (PFM). Yet, absolute determination of such displacements, giving access for instance to materials' piezoelectric coefficients, are hindered by both mechanical and electrostatic side-effects, requiring complex experimental and/or post-processing procedures for carrying out reliable results. The employment of quartz tuning-fork force sensors in an intermittent contact mode PFM is able to provide measurements of electrically-induced surface displacements that are not influenced by electrostatic side-effects typical of more conventional cantilever-based PFM. The method is shown to yield piezoeffect mapping on standard ferroelectric test crystals (periodically-poled lithium niobate and triglycine sulfate), as well as on a ferroelectric polymer (PVDF), with no visible influence from the applied dc electric potential.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Three-dimensional force spectroscopy of KBr(001) by tuning fork-based cryogenic noncontact atomic force microscopy
    Such, Bartosz
    Glatzel, Thilo
    Kawai, Shigeki
    Koch, Sascha
    Meyer, Ernst
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2010, 28 (03):
  • [42] Piezoresponse force microscopy studies of the triglycine sulfate-based nanofibers
    Isakov, D. V.
    Gomes, E. de Matos
    Almeida, B. G.
    Bdikin, I. K.
    Martins, A. M.
    Kholkin, A. L.
    JOURNAL OF APPLIED PHYSICS, 2010, 108 (04)
  • [43] Quantification of the Electromechanical Measurements by Piezoresponse Force Microscopy
    Buragohain, Pratyush
    Lu, Haidong
    Richter, Claudia
    Schenk, Tony
    Kariuki, Pamenas
    Glinsek, Sebastjan
    Funakubo, Hiroshi
    Iniguez, Jorge
    Defay, Emmanuel
    Schroeder, Uwe
    Gruverman, Alexei
    ADVANCED MATERIALS, 2022, 34 (47)
  • [44] Electrostatic-free piezoresponse force microscopy
    Kim, Sungho
    Seol, Daehee
    Lu, Xiaoli
    Alexe, Marin
    Kim, Yunseok
    SCIENTIFIC REPORTS, 2017, 7
  • [45] Progress in nanoscale piezoresponse force microscopy on ferroelectrics
    Yu, HF
    Zeng, HR
    Chu, RQ
    Li, GR
    Yin, QR
    JOURNAL OF INORGANIC MATERIALS, 2005, 20 (02) : 257 - 266
  • [46] Local polarization switching in piezoresponse force microscopy
    Morozovska, Anna N.
    Kalinin, Sergei V.
    Eliseev, Eugene A.
    Svechnikov, Sergei V.
    FERROELECTRICS, 2007, 354 : 198 - 207
  • [47] Preface to Special Topic: Piezoresponse Force Microscopy
    Balke, Nina
    Bassiri-Gharb, Nazanin
    Lichtensteiger, Celine
    JOURNAL OF APPLIED PHYSICS, 2015, 118 (07)
  • [48] Piezoresponse force microscopy for imaging of GaN surfaces
    Calarco, R
    Meijers, R
    Stoica, T
    Lüth, H
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2005, 202 (05): : 785 - 789
  • [49] Single frequency vertical piezoresponse force microscopy
    Hong, Seungbum
    JOURNAL OF APPLIED PHYSICS, 2021, 129 (05)
  • [50] A coupled analysis of the piezoresponse force microscopy signals
    Wang, J. H.
    Chen, C. Q.
    APPLIED PHYSICS LETTERS, 2011, 99 (17)