Experimentally Accessible Lower Bounds for Genuine Multipartite Entanglement and Coherence Measures

被引:33
|
作者
Dai, Yue [1 ,2 ]
Dong, Yuli [2 ]
Xu, Zhenyu [2 ]
You, Wenlong [2 ]
Zhang, Chengjie [1 ,2 ,3 ]
Guehne, Otfried [3 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
[2] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[3] Univ Siegen, Nat Wissench Tech Fak, Walter Flex Str 3, Siegen 57068, Germany
来源
PHYSICAL REVIEW APPLIED | 2020年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
SEPARABILITY; CONCURRENCE;
D O I
10.1103/PhysRevApplied.13.054022
中图分类号
O59 [应用物理学];
学科分类号
摘要
Experimentally quantifying entanglement and coherence are extremely important for quantum resource theory. However, because the quantum state tomography requires exponentially growing measurements with the number of qubits, it is hard to quantify entanglement and coherence based on the full information of the experimentally realized multipartite states. Fortunately, other methods have been found to directly measure the fidelity of experimental states without quantum state tomography. Here we present a fidelity-based method to derive experimentally accessible lower bounds for measures of genuine multipartite entanglement and coherence. On the one hand, the method works for genuine multipartite entanglement measures including the convex-roof extended negativity, the concurrence, the G-concurrence, and the geometric measure for genuine multipartite entanglement. On the other hand, the method also delivers observable lower bounds for the convex roof of the l(1)-norm of coherence, the geometric measure of coherence, and the coherence of formation. Furthermore, all the lower bounds are based on the fidelity between the chosen pure state and the target state, and we obtain the lower bounds of several real experimental states as examples of our results.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Multipartite entanglement measures
    Szalay, Szilard
    PHYSICAL REVIEW A, 2015, 92 (04)
  • [32] Genuine multipartite entanglement and quantum coherence in an electron-positron system: Relativistic covariance
    Petreca, Alexandra T.
    Cardoso, Gabriel
    Devecchi, Fernando P.
    Angelo, Renato M.
    PHYSICAL REVIEW A, 2022, 105 (03)
  • [33] Bounds on the multipartite entanglement of superpositions
    Song, Wei
    Liu, Nai-Le
    Chen, Zeng-Bing
    PHYSICAL REVIEW A, 2007, 76 (05):
  • [34] Distinguishability-based genuine nonlocality with genuine multipartite entanglement
    Xiong, Zong-Xing
    Li, Mao-Sheng
    Zheng, Zhu-Jun
    Li, Lvzhou
    PHYSICAL REVIEW A, 2023, 108 (02)
  • [35] Parameterized entanglement measures with computable lower bounds
    Bao, Gui
    Zhu, Xue-Na
    QUANTUM INFORMATION PROCESSING, 2025, 24 (03)
  • [36] A Genuine Multipartite Entanglement Measure Generated by the Parametrized Entanglement Measure
    Shi, Xian
    Chen, Lin
    ANNALEN DER PHYSIK, 2023, 535 (12)
  • [37] Converting multilevel nonclassicality into genuine multipartite entanglement
    Regula, Bartosz
    Piani, Marco
    Cianciaruso, Marco
    Bromley, Thomas R.
    Streltsov, Alexander
    Adesso, Gerardo
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [38] Detecting genuine multipartite entanglement in steering scenarios
    Jebaratnam, C.
    PHYSICAL REVIEW A, 2016, 93 (05)
  • [39] Detection of genuine entanglement for multipartite quantum states
    Hui Zhao
    Yu-Qiu Liu
    Naihuan Jing
    Zhi-Xi Wang
    Quantum Information Processing, 21
  • [40] Heuristic for estimation of multiqubit genuine multipartite entanglement
    Mendonca, Paulo E. M. F.
    Marchiolli, Marcelo A.
    Milburn, Gerard J.
    INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2015, 13 (03)