Parameterized entanglement measures with computable lower bounds

被引:0
|
作者
Bao, Gui [1 ]
Zhu, Xue-Na [1 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Shandong, Peoples R China
关键词
Entanglement measures; q-concurrence; Lower bounds; SEPARABILITY; CRITERION;
D O I
10.1007/s11128-025-04692-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present the parameterized entanglement measures, q-concurrence with q>0 and q not equal 1. And we derive analytical lower bounds for the entanglement measures by using positive partial transposition and realignment criteria, detailed examples are presented. Moreover, we show that the increase of q-concurrence (1<q<2)for some superposition states are upper bounded by 1/2.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Measure of multipartite entanglement with computable lower bounds
    Hong, Yan
    Gao, Ting
    Yan, Fengli
    PHYSICAL REVIEW A, 2012, 86 (06)
  • [2] Measure of genuine multipartite entanglement with computable lower bounds
    Ma, Zhi-Hao
    Chen, Zhi-Hua
    Chen, Jing-Ling
    Spengler, Christoph
    Gabriel, Andreas
    Huber, Marcus
    PHYSICAL REVIEW A, 2011, 83 (06):
  • [3] Computable lower bounds on the entanglement cost of quantum channels
    Lami, Ludovico
    Regula, Bartosz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (03)
  • [4] Lower bounds on entanglement measures from incomplete information
    Guehne, O.
    Reimpell, M.
    Wemer, R. F.
    PHYSICAL REVIEW A, 2008, 77 (05):
  • [5] Parameterized Bipartite Entanglement Measures and Entanglement Constraints
    Zhou, Wen
    Shen, Zhong-Xi
    Xuan, Dong-Ping
    Wang, Zhi-Xi
    Fei, Shao-Ming
    ADVANCED QUANTUM TECHNOLOGIES, 2025,
  • [6] Computable measures for the entanglement of indistinguishable particles
    Iemini, Fernando
    Vianna, Reinaldo O.
    PHYSICAL REVIEW A, 2013, 87 (02):
  • [7] Computable upper and lower bounds on eigenfrequencies
    Wang, Li
    Chamoin, Ludovic
    Ladeveze, Pierre
    Zhong, Hongzhi
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 302 : 27 - 43
  • [8] Experimentally Accessible Lower Bounds for Genuine Multipartite Entanglement and Coherence Measures
    Dai, Yue
    Dong, Yuli
    Xu, Zhenyu
    You, Wenlong
    Zhang, Chengjie
    Guehne, Otfried
    PHYSICAL REVIEW APPLIED, 2020, 13 (05):
  • [9] Computable and Operationally Meaningful Multipartite Entanglement Measures
    Beckey, Jacob L.
    Gigena, N.
    Coles, Patrick J.
    Cerezo, M.
    PHYSICAL REVIEW LETTERS, 2021, 127 (14)
  • [10] Two computable sets of multipartite entanglement measures
    Hiesmayr, Beatrix C.
    Huber, Marcus
    Krammer, Philipp
    PHYSICAL REVIEW A, 2009, 79 (06):