Parameterized entanglement measures with computable lower bounds

被引:0
|
作者
Bao, Gui [1 ]
Zhu, Xue-Na [1 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Shandong, Peoples R China
关键词
Entanglement measures; q-concurrence; Lower bounds; SEPARABILITY; CRITERION;
D O I
10.1007/s11128-025-04692-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present the parameterized entanglement measures, q-concurrence with q>0 and q not equal 1. And we derive analytical lower bounds for the entanglement measures by using positive partial transposition and realignment criteria, detailed examples are presented. Moreover, we show that the increase of q-concurrence (1<q<2)for some superposition states are upper bounded by 1/2.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Parameterized Compilation Lower Bounds for Restricted CNF-Formulas
    Mengel, Stefan
    THEORY AND APPLICATIONS OF SATISFIABILITY TESTING - SAT 2016, 2016, 9710 : 3 - 12
  • [32] On Proving Parameterized Size Lower Bounds for Multilinear Algebraic Models
    Ghosal, Purnata
    Rao, B. V. Raghavendra
    COMPUTING AND COMBINATORICS, COCOON 2019, 2019, 11653 : 178 - 192
  • [33] Lower bounds on the entanglement of formation for general Gaussian states
    Rigolin, G
    Escobar, CO
    PHYSICAL REVIEW A, 2004, 69 (01): : 6
  • [34] Lower bounds on the entanglement of formation for general Gaussian states
    Rigolin, G.
    Escobar, C.O.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2004, 69 (01): : 123071 - 123076
  • [35] Lower and upper bounds for entanglement of Renyi-α entropy
    Song, Wei
    Chen, Lin
    Cao, Zhuo-Liang
    SCIENTIFIC REPORTS, 2016, 6
  • [36] Separability and lower bounds of quantum entanglement based on realignment
    Sun, Jiaxin
    Yao, Hongmei
    Fei, Shao-Ming
    Fan, Zhaobing
    PHYSICAL REVIEW A, 2025, 111 (01)
  • [37] A note on the lower bounds of genuine multipartite entanglement concurrence
    Li, Ming
    Dong, Yaru
    Zhang, Ruiqi
    Zhu, Xuena
    Shen, Shuqian
    Li, Lei
    Fei, Shao-Ming
    QUANTUM INFORMATION PROCESSING, 2024, 23 (12)
  • [38] Tight lower bounds for certain parameterized NP-hard problems
    Chen, J
    Chor, B
    Fellows, M
    Huang, XZ
    Juedes, D
    Kanj, I
    Xia, G
    19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 150 - 160
  • [39] ALMOST OPTIMAL LOWER BOUNDS FOR PROBLEMS PARAMETERIZED BY CLIQUE-WIDTH
    Fomin, Fedor V.
    Golovach, Petr A.
    Lokshtanov, Daniel
    Saurabh, Saket
    SIAM JOURNAL ON COMPUTING, 2014, 43 (05) : 1541 - 1563
  • [40] LOWER BOUNDS ON THE VC-DIMENSION OF SMOOTHLY PARAMETERIZED FUNCTION CLASSES
    LEE, WS
    BARTLETT, PL
    WILLIAMSON, RC
    NEURAL COMPUTATION, 1995, 7 (05) : 1040 - 1053