Parameterized entanglement measures with computable lower bounds

被引:0
|
作者
Bao, Gui [1 ]
Zhu, Xue-Na [1 ]
机构
[1] Ludong Univ, Sch Math & Stat Sci, Yantai 264025, Shandong, Peoples R China
关键词
Entanglement measures; q-concurrence; Lower bounds; SEPARABILITY; CRITERION;
D O I
10.1007/s11128-025-04692-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present the parameterized entanglement measures, q-concurrence with q>0 and q not equal 1. And we derive analytical lower bounds for the entanglement measures by using positive partial transposition and realignment criteria, detailed examples are presented. Moreover, we show that the increase of q-concurrence (1<q<2)for some superposition states are upper bounded by 1/2.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Efficiently Computable Lower Bounds for the p-radius of Switching Linear Systems
    Ogura, Masaki
    Jungers, Raphael M.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5463 - 5468
  • [42] Tight lower bounds for certain parameterized NP-hard problems
    Chen, J
    Chor, B
    Fellows, M
    Huang, XZ
    Juedes, D
    Kanj, IA
    Xia, G
    INFORMATION AND COMPUTATION, 2005, 201 (02) : 216 - 231
  • [43] EXACT LOWER AND UPPER BOUNDS FOR GAUSSIAN MEASURES
    Pinelis, I.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (03) : 485 - 493
  • [44] Adaptive Lower Bounds for Gaussian Measures of Polytopes
    Hanebeck, Uwe D.
    Dolgov, Maxim
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1489 - 1496
  • [45] Invariant Measures and Lower Ricci Curvature Bounds
    Santos-Rodriguez, Jaime
    POTENTIAL ANALYSIS, 2020, 53 (03) : 871 - 897
  • [46] Invariant Measures and Lower Ricci Curvature Bounds
    Jaime Santos-Rodríguez
    Potential Analysis, 2020, 53 : 871 - 897
  • [47] Improved lower bounds on genuine-multipartite-entanglement concurrence
    Chen, Zhi-Hua
    Ma, Zhi-Hao
    Chen, Jing-Ling
    Severini, Simone
    PHYSICAL REVIEW A, 2012, 85 (06):
  • [48] Upper and lower bounds for Tsallis-q entanglement measure
    Mahboobeh Moslehi
    Hamid Reza Baghshahi
    Sayyed Yahya Mirafzali
    Quantum Information Processing, 2020, 19
  • [49] Lower and upper bounds for entanglement of Rényi-α entropy
    Wei Song
    Lin Chen
    Zhuo-Liang Cao
    Scientific Reports, 6
  • [50] Upper and lower bounds for Tsallis-q entanglement measure
    Moslehi, Mahboobeh
    Baghshahi, Hamid Reza
    Mirafzali, Sayyed Yahya
    QUANTUM INFORMATION PROCESSING, 2020, 19 (11)