Experimentally Accessible Lower Bounds for Genuine Multipartite Entanglement and Coherence Measures

被引:33
|
作者
Dai, Yue [1 ,2 ]
Dong, Yuli [2 ]
Xu, Zhenyu [2 ]
You, Wenlong [2 ]
Zhang, Chengjie [1 ,2 ,3 ]
Guehne, Otfried [3 ]
机构
[1] Ningbo Univ, Sch Phys Sci & Technol, Ningbo 315211, Peoples R China
[2] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[3] Univ Siegen, Nat Wissench Tech Fak, Walter Flex Str 3, Siegen 57068, Germany
来源
PHYSICAL REVIEW APPLIED | 2020年 / 13卷 / 05期
基金
中国国家自然科学基金;
关键词
SEPARABILITY; CONCURRENCE;
D O I
10.1103/PhysRevApplied.13.054022
中图分类号
O59 [应用物理学];
学科分类号
摘要
Experimentally quantifying entanglement and coherence are extremely important for quantum resource theory. However, because the quantum state tomography requires exponentially growing measurements with the number of qubits, it is hard to quantify entanglement and coherence based on the full information of the experimentally realized multipartite states. Fortunately, other methods have been found to directly measure the fidelity of experimental states without quantum state tomography. Here we present a fidelity-based method to derive experimentally accessible lower bounds for measures of genuine multipartite entanglement and coherence. On the one hand, the method works for genuine multipartite entanglement measures including the convex-roof extended negativity, the concurrence, the G-concurrence, and the geometric measure for genuine multipartite entanglement. On the other hand, the method also delivers observable lower bounds for the convex roof of the l(1)-norm of coherence, the geometric measure of coherence, and the coherence of formation. Furthermore, all the lower bounds are based on the fidelity between the chosen pure state and the target state, and we obtain the lower bounds of several real experimental states as examples of our results.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Genuine multipartite entanglement from a thermodynamic perspective
    Sun, Wenlong
    Jin, Yuanfeng
    Lu, Gang
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [42] Criterion for Genuine Multipartite Entanglement Quantum Channels
    Jiang Nian-Quan
    Wang Yu-Jian
    CHINESE PHYSICS LETTERS, 2010, 27 (01)
  • [43] Genuine multipartite entanglement in quantum phase transitions
    de Oliveira, TR
    Rigolin, G
    de Oliveira, MC
    PHYSICAL REVIEW A, 2006, 73 (01):
  • [44] Teleportation and dense coding with genuine multipartite entanglement
    Yeo, Y
    Chua, WK
    PHYSICAL REVIEW LETTERS, 2006, 96 (06)
  • [45] Remote state preparation with genuine multipartite entanglement
    Ma Yi-Cong
    Zhang Yong-Sheng
    Guo Guang-Can
    CHINESE PHYSICS LETTERS, 2007, 24 (03) : 606 - 608
  • [46] Detection of genuine entanglement for multipartite quantum states
    Zhao, Hui
    Liu, Yu-Qiu
    Jing, Naihuan
    Wang, Zhi-Xi
    QUANTUM INFORMATION PROCESSING, 2022, 21 (09)
  • [47] Evaluable multipartite entanglement measures: Multipartite concurrences as entanglement monotones
    Demkowicz-Dobrzanski, Rafal
    Buchleitner, Andreas
    Kus, Marek
    Mintert, Florian
    PHYSICAL REVIEW A, 2006, 74 (05):
  • [48] Activation of metrologically useful genuine multipartite entanglement
    Trenyi, Robert
    Lukacs, Arpad
    Horodecki, Pawel
    Horodecki, Ryszard
    Vertesi, Tamas
    Toth, Geza
    NEW JOURNAL OF PHYSICS, 2024, 26 (02):
  • [49] General framework for genuine multipartite entanglement detection
    Xu, Xin-Yu
    Zhou, Qing
    Zhao, Shuai
    Hu, Shu-Ming
    Li, Li
    Liu, Nai-Le
    Chen, Kai
    PHYSICAL REVIEW A, 2023, 107 (05)
  • [50] Witnessing Genuine Multipartite Entanglement with Positive Maps
    Huber, Marcus
    Sengupta, Ritabrata
    PHYSICAL REVIEW LETTERS, 2014, 113 (10)