Rational Krylov methods for optimal L2 model reduction

被引:7
|
作者
Magruder, Caleb [1 ]
Beattie, Christopher [1 ]
Gugercin, Serkan [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
SYSTEMS;
D O I
10.1109/CDC.2010.5717454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unstable dynamical systems can be viewed from a variety of perspectives. We discuss the potential of an input-output map associated with an unstable system to represent a bounded map from L-2 (R) to itself and then develop criteria for optimal reduced order approximations to the original (unstable) system with respect to an L-2-induced Hilbert-Schmidt norm. Our optimality criteria extend the Meier-Luenberger interpolation conditions for optimal H-2 approximation of stable dynamical systems. Based on this interpolation framework, we describe an iteratively corrected rational Krylov algorithm for L-2 model reduction. A numerical example involving a hard-to-approximate full-order model illustrates the effectiveness of the proposed approach.
引用
收藏
页码:6797 / 6802
页数:6
相关论文
共 50 条
  • [41] A Greedy Rational Krylov Method for H2-Pseudooptimal Model Order Reduction with Preservation of Stability
    Panzer, Heiko K. F.
    Jaensch, Stefan
    Wolf, Thomas
    Lohmann, Boris
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 5512 - 5517
  • [43] Frequency-limited pseudo-optimal rational Krylov algorithm for power system reduction
    Zulfiqar, Umair
    Sreeram, Victor
    Du, Xin
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2020, 118
  • [44] H∞ and L2/L∞ model reduction for system input with sector nonlinearities
    Lam, J
    Gao, H
    Xu, S
    Wang, C
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 125 (01) : 137 - 155
  • [45] On the Selection of Interpolation Points for Rational Krylov Methods
    Yetkin, E. Fatih
    Dag, Hasan
    SCIENTIFIC COMPUTING IN ELECTRICAL ENGINEERING (SCEE 2010), 2012, 16 : 415 - 422
  • [46] Anomaly Preserving l2,∞-Optimal Dimensionality Reduction Over a Grassmann Manifold
    Kuybeda, Oleg
    Malah, David
    Barzohar, Meir
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (02) : 544 - 552
  • [47] ON THE ZEROS OF L' + L2 FOR CERTAIN RATIONAL FUNCTIONS-L
    SHEILSMALL, T
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (04) : 1013 - 1016
  • [48] Entropy-based uncertainty measures for L2(Rn), l2(Ζ) and l2(Ζ/NΖ) with a Hirschman optimal transform for l2(Ζ/NΖ)
    DeBrunner, V
    Havlicek, JP
    Przebinda, T
    Özaydin, M
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) : 2690 - 2699
  • [49] Deadbeat response is l2 optimal
    Kucera, Vladimir
    2008 3RD INTERNATIONAL SYMPOSIUM ON COMMUNICATIONS, CONTROL AND SIGNAL PROCESSING, VOLS 1-3, 2008, : 154 - 157
  • [50] An optimal L2 autoconvolution inequality
    White, Ethan Patrick
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (01): : 108 - 121