Rational Krylov methods for optimal L2 model reduction

被引:7
|
作者
Magruder, Caleb [1 ]
Beattie, Christopher [1 ]
Gugercin, Serkan [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
SYSTEMS;
D O I
10.1109/CDC.2010.5717454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unstable dynamical systems can be viewed from a variety of perspectives. We discuss the potential of an input-output map associated with an unstable system to represent a bounded map from L-2 (R) to itself and then develop criteria for optimal reduced order approximations to the original (unstable) system with respect to an L-2-induced Hilbert-Schmidt norm. Our optimality criteria extend the Meier-Luenberger interpolation conditions for optimal H-2 approximation of stable dynamical systems. Based on this interpolation framework, we describe an iteratively corrected rational Krylov algorithm for L-2 model reduction. A numerical example involving a hard-to-approximate full-order model illustrates the effectiveness of the proposed approach.
引用
收藏
页码:6797 / 6802
页数:6
相关论文
共 50 条
  • [31] LOW-MEMORY KRYLOV SUBSPACE METHODS FOR OPTIMAL RATIONAL MATRIX FUNCTION APPROXIMATION
    Chen, Tyler
    Greenbaum, Anne
    Musco, Cameron
    Musco, Christopher
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2023, 44 (02) : 670 - 692
  • [32] Near-optimal Parameter Selection Methods for l2 Regularization
    Ballal, Tarig
    Suliman, Mohamed
    Al-Naffouri, Tareq Y.
    2017 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2017), 2017, : 1295 - 1299
  • [33] Projection properties of the L2 optimal reduced order model
    Halevi, Y
    INTERNATIONAL JOURNAL OF CONTROL, 2006, 79 (04) : 298 - 310
  • [34] L2 and L2-L∞ model reduction via linear matrix inequalities
    Univ of Houston, Houston, United States
    Int J Control, 3 (485-498):
  • [35] Model reduction in power systems using Krylov subspace methods
    Chaniotis, D
    Pai, MA
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (02) : 888 - 894
  • [36] Convergent algorithms for frequency weighted L2 model reduction
    Nanyang Technological Univ, Singapore, Singapore
    Syst Control Lett, 1 (11-20):
  • [37] ROUTH-TYPE L2 MODEL REDUCTION REVISITED
    Krajewski, Wieslaw
    Viaro, Umberto
    KYBERNETIKA, 2018, 54 (03) : 557 - 575
  • [38] Iterative-interpolation algorithms for L2 model reduction
    Krajewski, Wieslaw
    Viaro, Umberto
    CONTROL AND CYBERNETICS, 2009, 38 (02): : 543 - 554
  • [39] Model reduction in power systems using Krylov subspace methods
    Chaniotis, D
    Pai, MA
    2005 IEEE POWER ENGINEERING SOCIETY GENERAL MEETING, VOLS, 1-3, 2005, : 1412 - 1412
  • [40] Krylov Subspace Methods for Model Order Reduction in Computational Electromagnetics
    Bonotto, Matteo
    Cenedese, Angelo
    Bettini, Paolo
    IFAC PAPERSONLINE, 2017, 50 (01): : 6355 - 6360