Rational Krylov methods for optimal L2 model reduction

被引:7
|
作者
Magruder, Caleb [1 ]
Beattie, Christopher [1 ]
Gugercin, Serkan [1 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
关键词
SYSTEMS;
D O I
10.1109/CDC.2010.5717454
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Unstable dynamical systems can be viewed from a variety of perspectives. We discuss the potential of an input-output map associated with an unstable system to represent a bounded map from L-2 (R) to itself and then develop criteria for optimal reduced order approximations to the original (unstable) system with respect to an L-2-induced Hilbert-Schmidt norm. Our optimality criteria extend the Meier-Luenberger interpolation conditions for optimal H-2 approximation of stable dynamical systems. Based on this interpolation framework, we describe an iteratively corrected rational Krylov algorithm for L-2 model reduction. A numerical example involving a hard-to-approximate full-order model illustrates the effectiveness of the proposed approach.
引用
收藏
页码:6797 / 6802
页数:6
相关论文
共 50 条
  • [21] BIORTHOGONAL RATIONAL KRYLOV SUBSPACE METHODS
    Van Buggenhout, Niel
    Van Barel, Marc
    Vandebril, Raf
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2019, 51 : 451 - 468
  • [22] Degree reduction of classic disk rational Bezier curves in L2 Norm
    Shi, Mao
    2015 14TH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS (CAD/GRAPHICS), 2015, : 202 - 203
  • [23] An L2 inequality for rational functions
    Qazi, M. A.
    Rahman, Q. I.
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2010, 55 (07) : 657 - 668
  • [24] Two Modified Iterative Rational Krylov Algorithms for Optional H2 Model Reduction
    An, Yu'e
    Gu, Chuan-Qing
    PROCEEDINGS OF THE THIRD INTERNATIONAL WORKSHOP ON MATRIX ANALYSIS AND APPPLICATIONS, VOL 1, 2009, : 160 - 163
  • [25] L2 optimal filter reduction: a closed-loop approach
    Nanyang Technological Univ, Nanyang, Singapore
    IEEE Trans Signal Process, 1 (11-20):
  • [26] L2 optimal filter reduction:: A closed-loop approach
    Xie, LH
    Yan, WY
    Soh, YC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (01) : 11 - 20
  • [27] New a posteriori L∞(L2) and L2(L2)-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems
    Zuliang Lu
    Applications of Mathematics, 2016, 61 : 135 - 163
  • [28] ON OPTIMAL CONVERGENCE RATE OF THE RATIONAL KRYLOV SUBSPACE REDUCTION FOR ELECTROMAGNETIC PROBLEMS IN UNBOUNDED DOMAINS
    Knizhnerman, Leonid
    Druskin, Vladimir
    Zaslavsky, Mikhail
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (02) : 953 - 971
  • [29] On optimal recovery in L2
    Temlyakov, V.
    JOURNAL OF COMPLEXITY, 2021, 65
  • [30] AN INPUT NORMAL-FORM HOMOTOPY FOR THE L2 OPTIMAL-MODEL ORDER REDUCTION PROBLEM
    GE, Y
    COLLINS, EG
    WATSON, LT
    DAVIS, LD
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (06) : 1302 - 1305