Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces

被引:10
|
作者
Boukarou, Aissa [1 ]
Guerbati, Kaddour [1 ]
Zennir, Khaled [2 ]
Alodhaibi, Sultan [2 ]
Alkhalaf, Salem [3 ]
机构
[1] Univ Ghardaia, Lab Math & Sci Appl, Ghardaia 47000, Algeria
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass 51921, Saudi Arabia
[3] Qassim Univ, Coll Sci & Arts, Comp Dept, Ar Rass 51921, Saudi Arabia
关键词
modified Korteweg-de Vries equations; well-posedness; analytic Gevrey spaces; Bourgain spaces; trilinear estimates; time regularity; KDV; DEVRIES; MKDV;
D O I
10.3390/math8050809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Studies of modified Korteweg-de Vries-type equations are of considerable mathematical interest due to the importance of their applications in various branches of mechanics and physics. In this article, using trilinear estimate in Bourgain spaces, we show the local well-posedness of the initial value problem associated with a coupled system consisting of modified Korteweg-de Vries equations for given data. Furthermore, we prove that the unique solution belongs to Gevrey space G(sigma) x G(sigma) in x and G(3 sigma) x G(3 sigma) in t. This article is a continuation of recent studies reflected.
引用
收藏
页数:16
相关论文
共 50 条