Well-Posedness and Time Regularity for a System of Modified Korteweg-de Vries-Type Equations in Analytic Gevrey Spaces

被引:10
|
作者
Boukarou, Aissa [1 ]
Guerbati, Kaddour [1 ]
Zennir, Khaled [2 ]
Alodhaibi, Sultan [2 ]
Alkhalaf, Salem [3 ]
机构
[1] Univ Ghardaia, Lab Math & Sci Appl, Ghardaia 47000, Algeria
[2] Qassim Univ, Coll Sci & Arts, Dept Math, Ar Rass 51921, Saudi Arabia
[3] Qassim Univ, Coll Sci & Arts, Comp Dept, Ar Rass 51921, Saudi Arabia
关键词
modified Korteweg-de Vries equations; well-posedness; analytic Gevrey spaces; Bourgain spaces; trilinear estimates; time regularity; KDV; DEVRIES; MKDV;
D O I
10.3390/math8050809
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Studies of modified Korteweg-de Vries-type equations are of considerable mathematical interest due to the importance of their applications in various branches of mechanics and physics. In this article, using trilinear estimate in Bourgain spaces, we show the local well-posedness of the initial value problem associated with a coupled system consisting of modified Korteweg-de Vries equations for given data. Furthermore, we prove that the unique solution belongs to Gevrey space G(sigma) x G(sigma) in x and G(3 sigma) x G(3 sigma) in t. This article is a continuation of recent studies reflected.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Well-posedness of stochastic Korteweg-de Vries-Benjamin-Ono equation
    Wang, Guolian
    Guo, Boling
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (01) : 161 - 177
  • [32] WELL-POSEDNESS OF KORTEWEG-DE VRIES-BURGERS EQUATION ON A FINITE DOMAIN
    Li, Jie
    Liu, Kangsheng
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2017, 48 (01): : 91 - 116
  • [33] Well-posedness of stochastic Korteweg-de Vries-Benjamin-Ono equation
    Guolian Wang
    Boling Guo
    Frontiers of Mathematics in China, 2010, 5 : 161 - 177
  • [34] Well-posedness of Korteweg-de Vries-Burgers equation on a finite domain
    Jie Li
    Kangsheng Liu
    Indian Journal of Pure and Applied Mathematics, 2017, 48 : 91 - 116
  • [35] Blowup of solutions of a Korteweg-de Vries-type equation
    Yushkov, E. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (01) : 932 - 938
  • [36] The radius of convergence and the well-posedness of the Painleve expansions of the Korteweg-de Vries equation
    Joshi, N
    Srinivasan, GK
    NONLINEARITY, 1997, 10 (01) : 71 - 79
  • [37] Existence for Korteweg-de Vries-type equation with delay
    Zhihong Zhao
    Erhua Rong
    Xiangkui Zhao
    Advances in Difference Equations, 2012
  • [38] Existence for Korteweg-de Vries-type equation with delay
    Zhao, Zhihong
    Rong, Erhua
    Zhao, Xiangkui
    ADVANCES IN DIFFERENCE EQUATIONS, 2012,
  • [39] Local well-posedness and time regularity for a fifth-order shallow water equations in analytic Gevrey–Bourgain spaces
    Aissa Boukarou
    Kaddour Guerbati
    Khaled Zennir
    Monatshefte für Mathematik, 2020, 193 : 763 - 782
  • [40] Integrable symplectic maps associated with discrete Korteweg-de Vries-type equations
    Xu, Xiaoxue
    Jiang, Mengmeng
    Nijhoff, Frank W.
    STUDIES IN APPLIED MATHEMATICS, 2021, 146 (01) : 233 - 278