Global well-posedness and inviscid limit for the modified Korteweg-de Vries-Burgers equation

被引:0
|
作者
Zhang, Hua [1 ]
Han, LiJia [1 ]
机构
[1] Peking Univ, LMAM, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
MKdV-Burgers equation; Uniform global well-posedness; Inviscid limit behavior; LOW-REGULARITY; CAUCHY-PROBLEM; KDV;
D O I
10.1016/j.na.2009.02.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Considering the Cauchy problem for the modified Korteweg-de Vries-Burgers equation u(t) + u(xxx) + epsilon vertical bar partial derivative(x)vertical bar(2 alpha)u = 2(u(3))(x), u(0) = phi where 0 < epsilon, alpha <= 1 and u is a real-valued function, we show that it is uniformly globally well-posed in H-s (s >= 1) for all epsilon is an element of (0, 1]. Moreover, we prove that for any s >= 1 and T > 0, its solution converges in C ([0, T]; H-s) to that of the MKdV equation if epsilon tends to 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:E1708 / E1715
页数:8
相关论文
共 50 条